

Cables and Standards

Lokman A Dahlan Technical Advisor

Development of MS Standard Cables

- The development of national standards on electric cables takes into account the principles and norms as established internationally, current prevailing conditions and local practices. It is important to understand that these aspects are majorly unbeknown to buyers and users, hence failure to comply on critical aspects may present an undetermined risk on safety.
- A brief outlook on the basic design of electric cables will provide an understanding of why the supply of non-standard cables is a lucrative business whilst potentially diminishing the service life and reliability of the product. The impact of safety unfortunately may continue to be unknown as proof on non-compliance will usually be lost in fires and related disasters.
- In the way of most industrialized nations, it is important for product standards, certifications and markings to be respected and ingrained as a means of ensuring product quality, reliability and safety for all users.

Malaysian Standards (MS) on Cables

1	MS 2108: 2007	Electric Cable : 6.35/11(12)kV single core XLPE insulated cables – non-armoured						
2	MS 2109: 2007	Electric Cable : 6.35/11(12)kV single core XLPE insulated cables – armoured						
3	MS 2110 :2007	Electric Cable : 19/33(36)kV single core XLPE insulated cables – non-armoured						
4	MS 2111: 2007	Electric Cable : 19/33(36)kV single core XLPE insulated cables –armoured						
5	MS 2113*	Electric Cable : 12.7/22(24)kV single core XLPE insulated cables – non-armoured						
6	MS 2114*	Electric Cable : 12.7/22(24)kV single core XLPE insulated cables – armoured	MV-XLPE					
7	MS 2115*	Electric Cable : 6.35/11(12)kV three core XLPE insulated cables – non-armoured						
8	MS 2116*	Electric Cable : 6.35/11(12)kV three core XLPE insulated cables –armoured						
9	MS 2117*	Electric Cable : 12.7/22(24)kV three core XLPE insulated cables –armoured						
10	MS 2118*	Electric Cable : 2.7/22(24)kV three core XLPE insulated cables –armoured						
11	MS 2119*	Electric Cable : 19/33(36)kV three core XLPE insulated cables –armoured						
12	MS 2120*	Electric Cable : 19/33(36)kV three core XLPE insulated cables –armoured						
13	MS 2104:2007	Electric Cable and Wire: 600/1000(Um = 1200) V single core XLPE insulated cable – non-armoured						
14	MS 2105:2007	Electric Cable and Wire: 600/1000(Um = 1200) V single core XLPE insulated cable –armoured	LV-XLPE					
15	MS 2106:2007	6:2007 Electric Cable and Wire: 600/1000(Um = 1200) V multi core XLPE insulated cable –non-armoured						
16	MS 2107: 2007	Electric Cable and Wire: 600/1000(Um = 1200) V multi core XLPE insulated cable –armoured						
17	MS 2100:2006	Electric Cable and Wire: 600/1000(Um = 1200) V single core PVC insulated cable – non-armoured						
18	MS 2101:2006	Electric Cable and Wire: 600/1000(Um = 1200) V single core PVC insulated cable –armoured	LV-PVC					
19	MS 2102:2007	Electric Cable and Wire: 600/1000(Um = 1200) V multi core PVC insulated cable –non-armoured						
20	MS 2103: 2007	Electric Cable and Wire: 600/1000(Um = 1200) V multi core PVC insulated cable –armoured						
21	MS 2112-1: 2009	Electric Cable and Wire: Polyvinyl Chloride(PVC) insulated cables of rated voltages up to and including 450/750 V - Part 1 : General requirements						
22	MS 2112-2: 2009	Electric Cable and Wire: Polyvinyl Chloride(PVC) insulated cables of rated voltages up to and including 450/750 V - Part 2 : Test Methods						
23	MS 2112-3: 2009 **	Electric Cable and Wire: Polyvinyl Chloride(PVC) insulated cables of rated voltages up to and including 450/750 V – Part 3 : Non-sheathed cables for fixed wiring	450/750V-PVC					
24	MS 2112-4: 2009 **	Electric Cable and Wire: Polyvinyl Chloride(PVC) insulated cables of rated voltages up to and including 450/750 V – Part 4 : Sheathed cables for fixed wiring	430/7300-100					
25	MS 2112-5: 2009 **	Electric Cable and Wire: Polyvinyl Chloride(PVC) insulated cables of rated voltages up to and including 450/750 V - Part 5 : Flexible cables						
26	MS 2112-6: 2009 **	Electric Cable and Wire: Polyvinyl Chloride(PVC) insulated cables of rated voltages up to and including 450/750 V – Part 6 : Cables for Lifts and flexible connections						
27	MS 2121*	Telecommunication Cable : Plastic Twin pair, triple and unit types, internal cable						
28	MS 2122*	Telecommunication Cable : Jumper cable						
29	MS 2123*	Telecommunication Cable : Self supporting drop wire	Telecoms					
30	MS 2124*	Telecommunication Cable :Fully Filled Unit Twin moisture barrier polyethylene sheathed cable (FF PEUT)	Telecoms					
31	MS 2125*	Telecommunication Cable : Integral Barrier Unit Twin moisture barrier poly ethylene sheathed cable (IB PEUT)						
32	MS 2126*	Telecommunication Cable : Polyethylene Insulated 25 Pair Unit Twin moisture barrier polyethylene sheathed cable (FS PEUT)						

MS Std Application

	Class	Ref Stds & Spec	ifications	MS Std Application	
Um (max voltage)	01055	Existing/Prev	New		
Above 170kV	EHV	Utility		MS standards not available - cables designed	
37kV - 170kV	HV	HV IEC/Utility		according to Utility and project requirements with variations to suit manufacturers' preference	
3.7kV - 36kV	MV	BS/IEC/Utility	Utility/MS	MS standards available for non-Utility market to	
1.2kV - 3.6kV	LV	BS/IEC/Owner	Utility/MS	facilitate connectivity to local Utility systems	
Below 1.2kV	ELV	BS>MS	BS>IEC>MS	MS standards available for all users	
Telecoms	Various	TMB/Service Providers	TMB>MS	MS standards available for all users	

MALAYSIAN CABLE MANUFACTURERS

Overview of Standards & Quality of Cables

Um (max voltage)	Class	Ref Stds & Specifications		Control on Quality & Inspection	Risk
UIII (IIIax Vullaye)	01033	Existing/Prev	New	Control on Quality & Inspection	IVION
Above 170kV	EHV	Utility		High scrutiny at all levels	Nil
37kV - 170kV	HV	IEC/Utility		High sampling rate of test & inspection	VLow
		1			
3.7kV - 36kV	MV	BS/IEC/Utility	Utility/MS	Adequate control on test & inspection	Low
1.2kV - 3.6kV	LV	BS/IEC/Owner	Utility/MS	Adequate control on test & inspection	Low
Below 1.2kV	ELV	BS>MS	BS>IEC>MS	Minimum or no control	High
Telecoms	Various	TMB/Service P	TMB>MS	High sampling rate of test & inspection	VLow

MALAYSIAN CABLE MANUFACTURERS

CMA Controlled Items under Suruhanjaya Tenaga

CATEGORY	ITEM DETAILS	REF STDS (Prev)	NEW MS
	Polyvinyl chloride (PC) insulated flexible cords	MS 136 : 1987 MS 140 : 1987 Equiv stds : BS/IEC/AS	Electric Cable and Wire - Polyvinyl Chloride (PVC) InsulatedCables of rated voltages up to and including 450 / 750 VMS2112-1:2009Part 1 : General RequirementsMS2112-2:2009Part 2 : Test MethodsMS2112-3:2009Part 3 : Non-Sheathed Cables for Fixed WiringMS2112-4:2009Part 4 : Sheathed Cables for Fixed WiringMS2112-5:2009Part 5 : Flexible CablesMS2112-6:2009Part 6 : Cables for Lift and Flexible Connections
	Rubber insulated cord and flexible cables	MS 140 : 1987	Under review, to retain under MS 140 : 1987

MS2112 :2009 Series

MS 2112 consists of the following parts, under the general title *Electric cable and wire - PVC insulated cables of rated voltages up to and including 450/750 V*:

Part 1: General requirements

Part 2: Test methods

Part 3: Non-sheathed cables for fixed wiring

Part 4: Sheathed cables for fixed wiring

Part 5: Flexible cables

Part 6: Cables for lift and flexible connections

Note : All cable types of conductor sizes up to and including 35 mmsq are controlled items under the Suruhanjaya Tenaga Malaysia

MS 2112-1:2009 Foreword

This Malaysian Standard was developed by the Working Group on Cables and Cable Accessories under the authority of the Industry Standards Committee on Electrotechnical-1. Development of this standard was carried out by the Malaysian Cable Manufacturers Association which is the Standards-Writing Organisation (SWO) appointed by SIRIM Berhad to develop standards for cables and cable accessories.

In the preparation of this standard, reference was made to the following:

- a) MS 136:1995, Specification for PVC-insulated cables (non-armoured) for electric power and lighting;
- b) MS 140:1987, Specification for insulated flexible cords and cables; and
- c) IEC 60227-1 Edition 3:2007, *Polyvinyl chloride insulated cables of rated voltages up to and including 450/750 V Part 1: General requirements*, published by the International Electrotechnical Commission.

The Working Group on Cables and Cable Accessories has determined that minor differences in requirement to the MS 136, MS 140 and IEC 60227-1 are necessary in order to comply with the prevailing practices of cable manufacturers and users in Malaysia. These are as follows:

- a) requirements of PVC/E and PVC/ST10 are based on maximum conductor temperature of 90 °C and 105 °C; PVC ST 9 is not applicable;
- b) bending test and snatch test for tinsel cord are not applicable;
- all cable types of conductor sizes up to and including 35 mm² are controlled items under the Suruhanjaya Tenaga;
- d) standard requirements for drumming and packaging of completed cables have been included;
- e) tests at low temperature for insulation and oversheath which are not suited to conditions in Malaysia have been excluded;
- f) insulation and sheathing compound shall comply with ROHS requirements;
- g) classification of insulation and sheathing are complying to IEC 60227 rather than to MS 138; and
- h) tinned conductor is not considered as far as possible.

Ac	CONTE	NTS	ELECTRIC CABLE	MS IEC 608 cables - Pai
Me			INSULATED CABLES C 450/750 V - P	temperature
				MS IEC 608
Mr Ms			4. 0	and optical c
Ir L	Committe	e represen	1 Scope	test - Therma
			This part of Malaysian Standard	IEC 60304, C
Mr	Foreword		PVC insulation of rated voltages	120 00004, (
lr H Mir			nominal voltages not exceeding	IEC 60227-2
	1	Scope	The particular types of cables a	V - Part 2: Te
Mr	-	•	2112-6.	IEC 60227-3
Ms Mr∶	2	Normati		V - Part 3: No
	3	Definitio	The testing methods of the parti and MS 2112-6 are given in MS:	
Mr I Mr I	Ū.	Denning	and wis 2112-0 are given in wis.	IEC 60227-4, V – Part 4: Si
Mr	4	General		v - Fan 4. Si
		4.1	2 Normative references	IEC 60227-5,
Мег		4.2	The following normative reference	V - Part 5: Fle
MEI		4.3	The following normative reference dated references, only the editio	IEC 60228, C
Mr I		4.4	the normative reference (includin	.20 00220, 0
Ms Mr t	5	Marking	MC 2112.2 Electric coble and	IEC 60332-1-
Mr /	Ū.	incarning	MS 2112-2, Electric cable and including 450/750 V - Part 2; Tes	for vertical fle mixed flame
Mr I		5.1		inixeu name
Mr I Mr I		5.2 5.3	MS 2112-3, Electric cable and	
Ms		5.3 5.4	including 450/750 V - Part 3: Nor	3 Definiti
Mr 1		0.1	MS 2112-4, Electric cable and	Eastha music
Ms Mr	6	Core ide	including 450/750 V - Part 4: She	For the purpo
Mr L		6.1	MS 2112 5 Electric coble and	
Mr I		6.2	MS 2112-5, Electric cable and including 450/750 V - Part 5: Flex	4 Genera
Mrt Msl			5	14 O
Mr N	7	Drummii	MS 2112-6, Electric cable and	4.1 Condu
Mr/ Mr(8	Tests on	including 450/750 V - Part 6: Cal	The conducto,
Mr F	•		MS IEC 60502-1, Power cable	
		8.1	voltages from 1 kV ($U_m = 1.2 kV$)	The maximum
		8.2 8.3	$1kV (U_m = 1.2kV)$ and $3kV (U_m =$	conductors sh
		8.4	MS IEC 60811-1-1, Common tes	The classes
		8.5	cables and optical cables - Pa	particular spec
		8.6	thickness and overall dimensions	4.2 Insulati
			MS IEC 60811-1-2, Common tes	7.2 IIISUIdl
	Table 1	Requirer	cables - Part 1: Methods for gene	The insulatior
				cable in the p
	Table 2	Requirer		6):
	Table 3	Requirer		a) type PVC/
			© STANDARDS MALAYSIA 2009 - All rig	0
	© STANDAF	RDS MALAYSI	· ·	2

more than 0.1mm. Compliance shall be checked by the test given in 4.7 of MS 2112-2. The sheath shall have adequate mechanical strength and elasticity within the temperature limits to which it may be exposed in normal use, with compliance with tests specified in Table 2. 5 Marking 5.1 Indication of origin and cable identification Cables shall be marked with the following details: a) name of manufacturer; b) voltage designation; 211 c) number and size of conductor; and d) standard number. Cables for use at a conductor temperature exceeding 70 °C shall be marked with the maximum conductor temperature. Marking may be by printing or by embossing on the insulation or sheath. 5.2 Continuity of marks The distance between the end and start of each element shall not exceed 50 mm while the distance between the end and start of each complete set of elements shall not exceed 550 mm. The 5.3 Durability Printed markings shall be durable. Compliance with this requirement shall be checked by the test given in 4.5 of MS 2112-2. 5.4 Legibility All markings shall be legible. 6 Core identification Each core shall be identified as follows: a) in cables having up to and including five cores by colour, see 6.1; or b) in cables having more than five cores by number, see 6.2. 6.1 Core identification by colours Identification of the cores shall be the use of coloured insulation. Each core shall have one colour, except the core identified by a combination of the colours Green-and-Yellow. 4 © STANDARDS MALAYSIA 2009 - All rights reserved

The minimum thickness at any place shall not fall below 85 % of the specified value by not

MS 2112-1

MS 2112-1:2009

b)

C)

d)

The

The

ren

che

The

eac

SDE

valı

The

limi

1.

4.3

Unl

5 a

or f

she

IEC

4.4

The

MS

a)

b)

C)

d)

The

The

she

thicl

tabl

© ST

MS 2112-1:2009

MS 2112-1:2009

For cables supplied in coils, the manner as deemed appropriate.	
	R
8 Test on completed cal	_
8.1 Electrical properties	1
The cables shall have adequat shall be checked by carrying c conductor at 20 ^o C shall be in ac	1.1
and the results to be obtained in	
8.2 Overall dimension	1.1.
The mean overall dimensions of the particular specifications (MS :	1.2
The difference between any two the same cross-section (ovality) mean overall diameter.	1.2
Compliance shall be checked by	1.2
8.3 Mechanical strength of fl	
The flexible cables shall be capa occurring in normal use.	1.2.
When specified in the particular s by the test given in Clause 6 of M	
8.4 Flexing test for flexible ca	2
See 6.1 of MS 2112-2.	2.1
During the test with 15 000 back Neither interruption of the current	2.2
After the test, the sample shall win MS 2112-2.	3
8.5 Test for separation of cor	3.1
See 6.2 of MS 2112-2.	3.2
The force shall be between 3 N ar	1)
8.6 Flame retardance	2)
All the cables shall comply with $th_{\!\!\!\!\!\!\!\!\!}$	

Ref.	Test	Re
no.	, itst	no
1	Tensile strength and elongation at break	1
1.1	Properties in the state a delivered:	2
1.1.1	Values to be obtained for the tensile strength: - median, minimum	2.1
1.1.2	Values to be obtained for the elongation at break: - median, minimum	2.2
1.2	Properties after ageing i oven	2.3
1.2.1	Ageing conditions: - temperature - duration of treatment	2.4
1.2.2	Values to be obtained for the tensile strength: - median, minimum - variation ¹⁾ , maximum	3.1
1.2.3	Values to be obtained fc the elongation at break: - median, minimum - variation ¹⁾ , maximum	3.2
2	Loss of mass test	
2.1	Ageing conditions: - temperature	3.3 3.4
2.2	- duration of treatment Values to be obtained fo	4
3	the loss of mass, maxim Compatibility test ²⁾	4.1
3.1	Ageing conditions	
3.2	Mechanical properties a ageing Values to be obtained	4.2
	Values to be obtained applicable when called up applicable when called up	 AL AL A

Table 1. Require

Ref.

no.

¢

Annex A (informative)

Code designation

Cables of the types covered by this standards are designated by two numerals, cable type and MS (Malaysian standard).

The classes and type of cable are as follows:

- 1. Non-sheathed cables for fixed wiring
- a) MS IV 01 Single-core non-sheathed cable with rigid conductor for general purpose;
- b) MS IV 01 Single-core non-sheathed cable with flexible conductor for general purpose;
- c) MS IV 03 Single-core non-sheathed cable with solid conductor for internal wiring for a conductor temperature of 70 °C;
- d) MS IV 04 Single-core non-sheathed cable with flexible conductor for internal wiring for a conductor temperature of 70 °C;
- e) MS IV 05 Single-core non-sheathed cable with solid conductor for internal wiring for a conductor temperature of 90 °C;
- f) MS IV 06 Single-core non-sheathed cable with flexible conductor for internal wiring for a conductor temperature of 90 °C;
- g) MS IV 07 Single-core non-sheathed cable with solid conductor for internal wiring for a conductor temperature of 105 °C; and
- h) MS IV 08 Single-core non-sheathed cable with flexible conductor for internal wiring for a conductor temperature of 105 °C.
- 2. Sheathed cables for fixed wiring
- a) MS VV 10 PVC Insulated PVC sheathed cables.
- 3. Flexible cables
- a) MS VVF 20 light PVC sheathed flexible cable;
- b) MS VVF 21 ordinary PVC sheathed flexible cable;
- c) MS VVF 22 heat resistant light PVC sheathed flexible cable 90 °C;
- d) MS VVF 23 heat resistant ordinary PVC sheathed flexible cable 90 °C;

e) MS VVF 24 - heat resistant light PVC sheathed flexible cable - 105 °C; and

- f) MS VVF 25 heat resistant ordinary PVC sheathed flexible cable 105 °C.
- 12

© STANDARDS MALAYSIA 2009 - All rights reserved

6

© STANDARDS MALAYSIA 2009 - /

Table 2 - Class 2 stranded conductors for single-core and multi-core cables

60228 © IEC:2004

- 11 -

Table 3 – Class 5 flexible copper conductors for single core and multi-core cables

1	2	3	4	5	6	7	8	9	10
Nominal	Mini	mum nu		nber of wires in the conductor			Maximum resistance of cond		luctor at 20°C
cross- sectional	Circ	Circular		Circular compacted		ped	Annealed cop	pper conductor	Aluminium or aluminium
area	Cu	AI	Cu	AI	Cu	AI	Plain wires	Metal-coated wires	alloy conductor ^c
mm ²							Ω/km	Ω/km	Ω/km
0,5	7	-		-	-	-	36,0	36,7	-
0,75	7	-	-	÷	~	-	24,5	24,8	
1,0	7	-	-	-	-	-	18,1	18,2	-
1,5	7	-	6	-	-	-	12,1	12,2	-
2,5	• 7	-	6	-	-	-	7,41	7,56	-
4	7	-	6	-	-	-	4,61	4,70	-
6	7	-	6	-	-	-	3,08	3,11	-
10	7	7	6	6	-	-	1,83	1,84	3,08
16	7	7	6	6	- 1	-	1,15	1,16	1,91
25	7	7	6	6	6	6	0,727	0,734	1,20
35	7	7	6	6	6	6	0,524	0,529	0,868
50	19	19	6	6	6	6	0,387	0,391	0,641
70	19	19	12	12	12	12	0,268	0,270	0,443
95	19	19	15	15	15	15	0,193	0,195	0,320
120	37	37	18	15	18	15	0,153	0,154	0,253
150	37	37	18	15	18	15	0,124	0,126	0,206
185	37	37	30	30	30	30	0,0991	0,100	0,164
240	37	37	34	30	34	30	0,0754	0,0762	0,125
300	61	61	34	30	34	30	0,0601	0,0607	0,100
400	61	61	53	53	53	53	0,0470	0,0475	0,0778
500	61	61	53	53	53	53	0,0366	0,0369	0,0605
630	91	91	53	53	53	53	0,0283	0,0286	0,0469
800	91	91	53	53	-	-	0,0221	0,0224	0,0367
1 000	91	91	53	53	-	-	0,0176	0,0177	0,0291
1 200				b			0,0151	0,0151	0,0247
1 400 ^a				b			0,0129	0,0129	0,0212
1 600				b			0,0113	0,0113	0,0186
1 800 ª				b			0,0101	0,0101	0,0165
2 000				b			0,0090	0,0090	0,0149
2 500				b			0,0072	0,0072	0,0127

equal segments (Milliken).
 For stranded aluminium alloy conductors having the same nominal cross-sectional area as an aluminium conductor the resistance value should be agreed between the manufacturer and the purchaser.

1	2	3	4	
Nominal	Maximum diameter of	Maximum resistance of conductor at 20 °C		
cross-sectional area	wires in conductor	Plain wires	Metal-coated wires	
mm ²	mm	Ω/km	Ω/km	
0,5	0,21	39,0	40,1	
0,75	0,21	26,0	26,7	
1,0	0,21	19,5	20,0	
1,5	0,26	13,3	13,7	
2,5	0,26	7,98	8,21	
4	0,31	4,95	5,09	
6	0,31	3,30	3,39	
10	0,41	1,91	1,95	
16	0,41	1,21	1,24	
25	0,41	0,780	0,795	
35	0,41	0,554	0,565	
50	0,41	0,386	0,393	
70	0,51	0,272	0,277	
95	0,51	0,206	0,210	
120	0,51	0,161	0,164	
150	0,51	0,129	0,132	
185	0,51	0,106	0,108	
240	0,51	0,0801	0,0817	
300	0,51	0,0641	0,0654	
400	0,51	0,0486	0,0495	
500	0,61	0,0384	0,0391	
630	0,61	0,0287	0,0292	

State of Lot of

4 Ordinary PVC

4.1 Code design

ELECTF

INSULATED

© STANDARDS MAL

	The code designation
1 Scope	4.2 Rated voltage
This part of Mal	The rated voltage sha
The types of cabl	4.3 Construction
a) MS VVF 20 -	4.3.1 Conductor
b) MS VVF 21 -	The conductor shall b IEC 60228. The number
 c) MS VVF 22 - d) MS VVF 23 - 	4.3.2 Insulation
e) MS VVF 24 -	The insulation shall b
f) MS VVF 25 -	around each conduct The insulation resista
2 Normative	4.3.3 Colours for (
The following nor dated references the normative ref	a) two core : Blue arb) three core : Blue,
MS 2112-1, Elec including 450/750	c) four core : Black,d) five core : Black,
MS 2112-2, Election including 450/750	4.3.4 Assembly of
MS IEC 60228, C	The cores for circular material to give a prac
MS IEC 60811-1 cables and optic thickness and ov	cores. The cores for flat cabl
MS IEC 60811-1 cables - Part 1: N	Any filler shall not adh
MS IEC 60811-1	4.3.5 Sheath
and optical cable water absorption	The sheath shall be a 2112-1 applied aroun shall not adhere to the
MS IEC 60811-1 and optical cable	The sheath thickness

e	Number and nominal	Class of co MS IEC
าะ	cross- sectional	
u	area of conductor (mm ²)	
1	2 x 0.75	5
	2 × 0.15	
b hł	2 x 1	5
b	2 x 1.5	5
а	2 x 2.5	5
(and the second	
ar	3 x 0.75	5
,	3 x 1	5
,	3 x 1.5	5
I	3 x 2.5	5
f	The second	
r	4 x 0.75	5
a	4 x 1	5
ol	4 x 1.5	5
lŀ	4 x 2.5	5
1	5 x 0.75	5
n ne	5 x 1	5
5	5 x 1.5	5
		1

5 x 2.5

© STANDARDS MALAYSI/

5

MS 2112-5:2009

Table 4. Tests for type MS VVF 21

Ref. no.	Test	Category of	Test method			
Rel. 110.	Test	test	Standard	Subclause		
1	Electric tests	Sec. 1				
1.39						
1.1	Resistance of conductors	T, S	MS 2112-2	5.1		
1.2	Voltage tests on cores according to voltage thickness:					
1.2.1	- at 1 500 V up to and including 0.6mm	T, S	MS 2112-2	5.3		
1.2.2	- at 2 000 V exceeding 0.6mm	T, S	MS 2112-2	5.3		
1.3	Voltage test on completed cable at 2 000 V	Т	MS 2112-2	5.2		
1.4	Insulation resistance at 70 °C	Т	MS 2112-2	5.4		
2	Provisions covering constructional and dimensional characteristics		MS 2112-1 and MS 2112-2			
			1015 2112-2			
2.1	Checking of compliance with constructional			Inspection and		
	provisions	T, S	MS 2112-2	manual test		
2.2	Measurement of insulation thickness	T, S	MS 2112-2	4.6		
2.3	Measurement of sheath thickness	T, S	MS 2112-2	4.7		
2.3	Measurement of overall dimension	T, S	Ms 2112-2	4.8		
3	Mechanical properties of insulation	T, S				
3.1	Tensile test before ageing	т	MS IEC 60811-1-1	9.1		
3.2	Tensile test after ageing	Т	MS IEC 60811-1-2	8.1, 3.1		
3.3	Loss of mass test	Т	MS IEC 60811-3-2	8.1		
4	Mechanical properties of sheath	т	MS IEC 60811-1-1	9.2		
4.1	Tensile test before and after ageing	Ť	MS IEC 60811-1-2	8.1		
4.2	Loss of mass test	Ť	MS IEC 60811-3-2	8.2		
5	Pressure test at high temperature					
5.1	Insulation	т	MS IEC 60811-3-1	8.1		
5.2	Sheath	Ť	MS IEC 60811-3-1	8.2		
6	Heat shock test					
6.1	Insulation	т	MS IEC 60811-3-1	9.1		
6.2	Sheath	Ť	MS IEC 60811-3-1	9.2		
7	Thermal stability					
7.1	Insulation	т	MS IEC 60811-3-2	9		
7.2	Sheath	Ť	MS IEC 60811-3-2	9		
8	Mechanical strength of completed cable					
8.1	Flexing test	Т	MS 2112-2	6.1		
9	Test of flame retardance	т	IEC 60332-1-2			

NON-STANDARD CABLES

Cables which are designed and constructed to other standards which may not comply to the prevailing requirements & regulations on test approvals and/or installation conditions

The development of national standards for electric cables takes into account the principles and norms as established internationally, current prevailing conditions and local practices. It is important to understand that these aspects are majorly unbeknown to buyers and users, hence <u>failure to comply</u> <u>on critical aspects may present an undetermined risk on safety.</u>

SUB-STANDARD CABLES

Cables which are not designed, constructed, test approved, installed or used in accordance to their prescribed standards and/or specifications

The development of national standards for electric cables takes into account the principles and norms as established internationally, current prevailing conditions and local practices. It is important to understand that these aspects are majorly unbeknown to buyers and users, hence <u>failure to comply</u> <u>on critical aspects may present an undetermined risk on safety.</u>

Basic Elements of Electric Cables

- CONDUCTOR determines base current ratings
- INSULATION determines voltage / stress levels
- PROTECTIVE LAYER determines protection level & installation conditions

Myths of Sub-Standard Cables

- Conductors are smaller due to "technological improvements"
- Copper purity is higher
- Able to withstand higher temperatures hence more current
- The standards have "changed"
- *"There is no problem, it still works.."*

Sub-Standard Element : Conductors

CRITERIA

- Metal content not meeting specifications (copper >99.9%, alum >99.7%)
- Undersized conductor does not meet the minimum cross-sectional area as determined by its specific resistance
- Construction not in accordance to prescribed standards on size & number of wires, buildup or dimensions

IMPACT

- Non-compliance to any of the above will result in conductor overload in excess of the maximum current loading of the cable
- This condition would lead to eventual breakdown of cable insulation, joints or connectors at installed positions or distribution boards
- Excessive overheating may result in short circuit conditions leading to an electrical fire

Sub-Standard Element : Insulation

CRITERIA

- Insulation material or type does not meet the required chemical and thermo-mechanical properties for long term ageing and environmental tests
- Applied insulation does not meet the requirement on thickness and physical aspects of the standards stipulated for the type and rated voltage of cable
- Insulated conductors are not identified by markings or colours as stipulated by the standards

IMPACT

- The use of non-compliant insulation material or construction will result in premature deterioration of the cable insulation in service
- This condition may eventually lead to breakdown of cable insulation, joints or connectors at installed positions or distribution boards
- Condition of undetected exposure caused by deteriorated insulation will be hazardous to users

Sub-Standard Element : Protective Layers

CRITERIA

- Material for protective layers do not meet the required chemical and/or thermo-mechanical properties for long term ageing and environmental tests
- Applied protective layers do not meet the requirement on thickness and physical aspects of the standards stipulated for the type and rated voltage of cable
- Completed cables are not identified by markings as stipulated by the standards

IMPACT

- Cables will not perform or its service life will be greatly reduced if the above properties do not meet their intended installed conditions
- Fire rated or alarm cables may be rendered inactive in fire related situations
- Cables which are incorrectly identified or installed in unintended locations may be hazardous to the environment or users

1Malaysia vs Sub-Standard Cables – The Way Forward

- ✓ To review & establish MS standards for cables & wires in full compliance with international standards and with due consideration given to meet pertinent local requirements, conditions & practices
- ✓ To publicize and promote the use of MS standards where available on cables and wires for domestic use, local installations and elsewhere by Malaysian contractors
- To combat against the manufacture, importation and use of substandard cables in the interest of public safety and towards sustaining an equitable and economically viable business for the cable manufacturing sector
- To support all measures by the relevant authorities including the imposition of clear labeling and the prohibition of retail selling of cables and wires without the MS standard mark of approval for items listed under the control of Suruhanjaya Tenaga (ST)
- To advocate the registration of all local manufacturers under MCMA as a prerequisite to be a supplier of the ST controlled MS standard cables
- To continually support and enhance the local economy and the Buy Malaysia campaign via the use of a wide range of cables in full compliance to applied standards, Made in Malaysia

The Malaysian Cable Manufacturers Association or MCMA (formerly known as the Malaysian Electrical Cable & Wire Assoc. or MECWA), was established in 1980 comprising manufacturers of power and telecommunication cables with the following objectives:

To provide a platform of communication and enhance the cooperation of all members on matters of common interest to the industry

To promote the products & services and activities of members locally and abroad via a common website and by participation in seminars, exhibition and conferences

To represent and safeguard the interest of members through channels of discussion and liaison with customers, government agencies and other organisations

To actively participate and contribute to the development of MS Standards on Electric Cables and related products

To enhance the reputation of MCMA as an ethical and responsible association of members with a positive contribution to the community

www.mcma.org.my