IN exercise of power conferred by Section 50c of the Electricity Supply Act 1990 [Act 447], the commission issues the following guideline:

Citation and Commencement

1. This Guideline may be cited as the “Guideline for The Design, Installation, Inspection, Testing, Operation and Maintenance of Water Heater Systems”.
2. This Guideline shall come into operation on the date of registration.

Interpretation

3. In this Guideline, unless the context otherwise requires –

 Act mean the Electricity Supply Act 1990 [Act 447], Electricity Supply (Amendment) Act 2015 [Act A1501] and its subsequent amendment, if any.

Purpose of this Guideline

4. The purpose of this Guideline is to guide industry and the public on the design, installation, inspection, testing, operation and maintenance of water heater systems usually used in residential and commercial buildings, hotels, resorts, etc. It shall be applicable to instantaneous, storage and solar water heaters. Storage and solar water heater capacities of up to 300 liters are covered by this Guideline.
Application of this Guideline

5. This Guideline will address:
 i. safety aspects of electrical wiring and accessories in the design, installation, inspection, testing, operation and maintenance of water heater systems; and the safety and efficiency aspects in the operation and use of water heater systems.

Notice by the Commission

6. The Commission may issue written notices from time to time in relation to this Guideline.

Amendment and Variation.

7. The Commission may at any time amend, modify, vary or revoke this Guideline.

Dated: 7 April 2017

DATUK IR. AHMAD FAUZI BIN HASAN
Chief Executive Officer
for Energy Commission

06 Foreword
07 Chapter 1: Scope
08 Chapter 2: Normative References
09 Chapter 3: Terms and Definitions
10 Chapter 4: Installation of Water Heater
23 Chapter 5: Operation and Maintenance of Water Heater
26 Annex A: Cases of Electrical Accidents involving Electric Water Heater
32 Annex B: Illustration of earthing arrangements, protective conductors and protective bonding conductors
34 Acknowledgements
36 List of Energy Commission Main and Regional Offices
Foreword

This Guideline was developed by the Work Group on Water Heater Systems under the authority of the Energy Commission of Malaysia.

A number of fatal accidents involving water heater have occurred in the country. The causes of these accidents have been identified as being both electrical and non electrical in nature. As such, the Energy Commission had taken the initiative to address this issue by producing this Guideline on the design, installation, inspection, testing, operation and maintenance of water heater systems with the view of ensuring the safe use of electric water heater.

It was developed for the use of: -

i. manufacturers, importers and retailers of electric and solar water heater systems with the view of them incorporating the necessary safety features in their products;
ii. installers of electrical and solar water heater systems;
iii. those involved in the maintenance of electrical and solar water heater systems; and
iv. the general public and users of electrical and solar water heater systems.

This Guideline will be subjected to periodic review to reflect current needs and technological advancements. Users and other interested parties may submit comments on the contents of this Guideline for consideration in future versions.

Compliance with a Malaysian Guideline does not itself confer immunity from legal obligations.
CHAPTER 1: SCOPE

This Guideline gives guidance on the good design, installation, inspection, testing, operation and maintenance of water heater systems usually used in residential installations, commercial building, hotel, resort and etc. It shall include instantaneous, storage and solar water heaters. Both storage and solar water heaters included in this Guideline is for capacities of up to 300 liters. It will address:

i. The installation of the water heater in the aspect of the electrical wiring and accessories to ensure safe operation and use of the water heater; and

ii. Safe, efficient operation and use of the water heater.

This Guideline does not include the safety requirements of the water heater itself, as they are covered by other Malaysian Standards, including the following:

i. MS IEC 60335-1:2013: Household and similar electrical appliances - Safety - Part 1: General requirements;

iii. MS 1597-2-35:2010 (IEC 60335-2-35:2006, mod): Household and similar electrical appliances - Safety - Part 2-35: Particular requirements for instantaneous water heater (second revision); and

CHAPTER 2: NORMATIVE REFERENCES

MS IEC 60335-1:2013: Household and similar electrical appliances - Safety - Part 1: General requirements

MS IEC 60364: Electrical Installations of Buildings

MS 1936: 2016: Electrical Installations of Buildings – Guide to MS IEC 60364

MS 1979: 2015: Electrical Installations of Buildings – Code of Practice

BS 7671:2015: Requirements for Electrical Installations
CHAPTER 3: TERMS AND DEFINITIONS

3.1 Normal Operation
Operation of the appliance while supplied with water, the flow being adjusted to attain the highest outlet water temperature without operation of the thermal cut-out.

3.2 Instantaneous Water Heater
Stationary appliance for heating water while it flows through the appliance.
Note: instantaneous water heater are referred to as water heater.

3.3 Closed Water Heater
Instantaneous water heater intended to operate at the pressure of the water system, the flow of water being controlled by one or more valves in the outlet system.
Note: the operating pressure may be the output pressure of a reducing or boosting device.

3.4 Open-outlet Water Heater
Instantaneous water heater in which the flow of water is controlled by a valve in the inlet pipe, there being no valve in the outlet pipe.

3.5 Bare-element Water Heater
Instantaneous water heater in which uninsulated heating elements are immersed in the water.

3.6 Rated Pressure
Water pressure assigned to the appliance by the manufacturer.

3.7 Flow Switch
Switch that operates in response to a flow of water.

3.8 Pressure Switch
Switch that operates in response to a change in pressure.

3.9 Solar Water Heater
Complete assembly of subsystems and components necessary to convert solar energy into thermal energy for the heating of water and may include an auxiliary heat source (ISO 9459-2:1995).
(water heater which includes a collector and storage tank, and uses the sun's thermal energy to heat water).

3.10 Storage Water Heater
An appliance intended for heating water in a thermally well insulated container, for long-term storage of the heated water, and provided with a device to control the water temperature.

3.11 Water Heater Systems
Complete system consists of heat generation, heat storage, electrical connections from mains, plumbing connections, and mechanical fittings.
CHAPTER 4: INSTALLATION OF WATER HEATER

4.1 Electrical installation

4.1.1 Regulatory requirements and standards compliance

a) All electrical installations and equipment shall comply with Electricity Supply Act 1990 [Act 447] and Electricity Regulations 1994.

b) All electrical installations and equipment, in addition to compliance with relevant product standards, shall comply with the following standards:

i. Non–residential or similar installation– MS 1936:2016 Electrical installations of buildings – Guide to MS IEC 60364;

iii. IEC 60364–7–701:2006 Low voltage electrical installations – Part 7–701: Requirements for special installation or locations – Locations containing a bath or shower; and

 a. Nominal voltage: Single or Three Phase: 230/400V -6%, +10%, 50 Hz ± 1; and

 b. Earthing system: TT.

 c) All electrical installations works shall be carried out by electrical contractor registered with Energy Commission or wireman in compliance with Electricity Supply Act 1990 [Act 447] and Electricity Regulations 1994.

 i. The wireman shall have valid certificates and registered with the Energy Commission; and

 ii. The electrical contractor shall have valid certificate of registration with the Energy Commission.

 d) The installation equipment shall comply with relevant product standards as per Table 1.

 i. If no MS or MS IEC standard exists, the relevant IEC standard shall apply;

 ii. The competent person as described at clause 4.1.1.c, shall ensure safety by carrying out a risk management study to ensure that the risk of use is within the accepted level; and

 iii. All equipment shall be approved by the Energy Commission if required.
Table 1: Electrical Standard for Installation Equipment

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>STANDARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumer Unit</td>
<td>IEC 61439–3:2012</td>
</tr>
<tr>
<td>Final distribution board</td>
<td>IEC 61439–3:2012</td>
</tr>
<tr>
<td>Circuit breaker</td>
<td>MS IEC 60947–2:2010</td>
</tr>
<tr>
<td>Wire and cable for fixed wiring</td>
<td>**MS IEC 60669:2012 (Non – Electronic)</td>
</tr>
<tr>
<td>Cable trunking and ducting conduit</td>
<td>MS 1777:2006 MS IEC 61386:2010</td>
</tr>
<tr>
<td>Double pole switch (Up to 63A)</td>
<td>**MS IEC 60669:2012 (Non – Electronic)</td>
</tr>
<tr>
<td>Flexible wire and cable</td>
<td>MS 2112–5:2009</td>
</tr>
</tbody>
</table>

*MCB – RCD combinations such as RCBO are acceptable as replacement
**Electronic switches are not permitted by MS IEC 60364
4.1.2 Wire or Cable Colour Code for Electrical Installations

a) Single phase supply: The colour code shall comply with Table 2.

Table 2: Single phase supply: Wire or cable colour code.

<table>
<thead>
<tr>
<th>Conductor</th>
<th>Colour Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Live</td>
<td>Red</td>
</tr>
<tr>
<td>Neutral</td>
<td>Black</td>
</tr>
<tr>
<td>Protective Earthing</td>
<td>Green</td>
</tr>
<tr>
<td>Equipotential bonding</td>
<td>Green</td>
</tr>
</tbody>
</table>

b) Three phase supply single phase circuit: The colour code shall comply with Table 3.

Table 3: Three phase supply single phase circuit: Wire or cable colour code.

<table>
<thead>
<tr>
<th>Conductor</th>
<th>Colour Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Live – Red phase</td>
<td>Red</td>
</tr>
<tr>
<td>Live – Yellow phase</td>
<td>Yellow</td>
</tr>
<tr>
<td>Live – Blue phase</td>
<td>Blue</td>
</tr>
<tr>
<td>Neutral</td>
<td>Black</td>
</tr>
<tr>
<td>Protective Earthing</td>
<td>Green</td>
</tr>
<tr>
<td>Equipotential bonding</td>
<td>Green</td>
</tr>
</tbody>
</table>

c) Three phase supply three phase circuit: The colour code shall comply with Table 4.

Table 4: Three phase supply three phase circuit: Wire or cable colour code.

<table>
<thead>
<tr>
<th>Conductor</th>
<th>Colour Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Live – Red / Yellow / Blue</td>
<td>Red / Yellow / Blue</td>
</tr>
<tr>
<td>Neutral</td>
<td>Black</td>
</tr>
<tr>
<td>Protective Earthing</td>
<td>Green</td>
</tr>
<tr>
<td>Equipotential bonding</td>
<td>Green</td>
</tr>
</tbody>
</table>
4.1.3 Voltage drop

a) The maximum voltage drop from the point of coupling with the electricity provider (i.e. distribution board or consumer unit) and the disconnector connecting to the water heater systems shall be less than or equal to 5%.

b) The recommended maximum length of final circuit of water heater system is equal to or less than 50 meter from the distribution board (DB) or consumer unit.

i. The voltage drop shall be checked if the circuit length is longer than 50 meter. In this case, a bigger size conductor shall be used to get the voltage drop below 5%.

4.1.4 Requirements of Final Circuits Supplying the Water Heater Systems

a) The final circuit supplying the water heater systems shall originate only from final distribution board (DB) or consumer unit as shown in Figure 1 to Figure 4.

i. The incoming of final distribution board or consumer unit shall incorporate a series MCB - RCD protection scheme. The sensitivity of the RCD shall be equal to or less than 100 mA for protection against thermal effects; and

ii. The MCB and RCD provide over–current and electric shock protection respectively.

b) The outgoing final circuit supplying the water heater systems shall be a dedicated outgoing circuit supplying the water heater systems only and shall not be used and/or shared for other purpose.

i. Power and lighting circuits shall not share a conduit/trunking;

ii. Only rigid conduit/trunking shall be used as cable management system;

iii. The space factor of conduit shall not be more than 40%. The space factor of trunking shall not be more than 45%; and

iv. The final circuit for water heater systems shall be preferably fixed wiring.

c) The dedicated final circuit of water heater systems shall be protected by a series MCB – RCD protection scheme.

i. The sensitivity of the RCD shall be equal to or less than 10 mA.

ii. The disconnection scheme of the MCB, RCD, Isolator / Disconnector, switches and Protective Earthing (PE) shall be as per Table 5.
Figure 1: Example of schematic diagram for single-phase water heater.
Figure 2: Example of schematic diagram for three-phase water heater.

d) The MCB and RCD ratings and cross-sectional area of the conductors shall be as per Table 6.

i. Only electrical current capacity graded copper conductor cables and equipment are permitted to be used in current carrying applications for installations.

e) Water heater installed in zone 1 shall have an IP rating of at least IPX5. All installations and equipment shall be located outside zone 2 as per IEC 60364–7–701:2006.

Figure 3: The installation of RCD for instantaneous water heater with leakage current sensitivity of 10mA in a wet area.

Figure 4: The installation of RCD for storage water heater with leakage current sensitivity of 10mA in a wet area.
Table 5: Disconnection scheme of MCB, RCD, Isolator / Disconnector, Switches and PE.

<table>
<thead>
<tr>
<th>Type of Circuit</th>
<th>MCB</th>
<th>RCD</th>
<th>Isolator / Disconnector</th>
<th>Switches</th>
<th>PE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single phase</td>
<td>1 pole</td>
<td>2 pole</td>
<td>2 pole</td>
<td>1 pole</td>
<td>No Break Permitted</td>
</tr>
<tr>
<td>Three phase</td>
<td>3 pole</td>
<td>4 pole</td>
<td>4 pole</td>
<td>3 pole</td>
<td>No Break Permitted</td>
</tr>
</tbody>
</table>

d) The MCB and RCD ratings and cross-sectional area of the conductors shall be as per Table 6.

i. Only electrical current capacity graded copper conductor cables and equipment are permitted to be used in current carrying applications for installations.

Table 6: Minimum conductor sizes.

<table>
<thead>
<tr>
<th>Water Heater Rating @ 230V</th>
<th>Load</th>
<th>MCB/ RCD (Minimum)</th>
<th>Live</th>
<th>Neutral</th>
<th>PE</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤2,856W</td>
<td>12.4A</td>
<td>16A</td>
<td>4 mm²</td>
<td>4 mm²</td>
<td>4 mm²</td>
</tr>
<tr>
<td>>2,856W to < 3,570W</td>
<td>15.5A</td>
<td>20A</td>
<td>4 mm²</td>
<td>4 mm²</td>
<td>4 mm²</td>
</tr>
<tr>
<td>>3,570W to < 4,462W</td>
<td>19.4A</td>
<td>25A</td>
<td>4 mm²</td>
<td>4 mm²</td>
<td>4 mm²</td>
</tr>
<tr>
<td>>4,462W to < 5,711W</td>
<td>24.8A</td>
<td>32A</td>
<td>4 mm²</td>
<td>4 mm²</td>
<td>4 mm²</td>
</tr>
<tr>
<td>>5,711W to < 7,139W</td>
<td>31A</td>
<td>40A</td>
<td>6 mm²</td>
<td>6 mm²</td>
<td>6 mm²</td>
</tr>
<tr>
<td>>7,139W to < 8,924W</td>
<td>38.8A</td>
<td>50A</td>
<td>10 mm²</td>
<td>10 mm²</td>
<td>10 mm²</td>
</tr>
</tbody>
</table>

For ratings of more than the above table, the cable shall be sized as per MS IEC 60364

e) Water heater installed in zone 1 shall have an IP rating of at least IPX5. All installations and equipment shall be located outside zone 2 as per IEC 60364–7–701:2006.
i. Only fixed and permanent connection is allowed, 13A/15A plug and socket shall not be used as shown in Figure 5. If there is a connection in between, only approved connector and connection box shall be used. For connection within the shower cubicle and below the ceiling, the connection box shall be IPX5 rated;

ii. The classifications of zones are as illustrated in Figures 6-9; and

iii. Any equipment outside zone 1 subject to water spraying hazard shall have an IP rating of at least IPX5.
When the shower head is at the end of a flexible tube, the vertical central axis of a zone passes through the fixed end of the flexible tube.

Figure 7: Zones 0, 1, 2 and 3 in proximity of a shower with basin.

Figure 8: Zones 0, 1, 2 and 3 in proximity of a shower without basin.

(1) When the shower head is at the end of a flexible tube, the vertical central axis of a zone passes through the fixed end of the flexible tube.
f) The water heater system circuit shall be terminated in a 2 or 4 pole switched maintenance disconnector with indicator.

i. This 2 or 4 pole switched maintenance disconnector shall be three (3) meters radius from the water heater system; and

ii. Alternatively, a 2 or 4 pole control switch with indicator and isolator combination can be used.

4.1.5 Connecting to the water heater system

a) In the case where a direct connection cannot be made to the water heater, an approved, correctly sized (MS IEC 60335-1: 2013) copper flexible cable with maximum 1.5 meter length, shall be used to connect the water heater to the connection box.

4.1.6 Earthing

a) The integrity of earthing is the most important factor in ensuring the reliable operation of the protective devices, especially the RCD for protection of safety against electric shock hazard.

b) An earth loop impedance tester shall be used to test the earthing impedance of the completed installation and the installation earth loop impedance earth.

4.1.7 Isolation Barrier

a) Storage water heater, solar thermal water heater, and multipoint instantaneous water heater shall be prefitted with isolation barriers at both water inlet and outlet connections. The specifications of the isolation barrier shall comply with the latest relevant requirements of MS 1597-2-21:2015.

b) The isolation barriers shall be installed at immediate connection to the water heater, as per Figure 10 below.
4.2 Hose Material and Minimum Length

4.2.1 The flexible hose from the water heater to the shower head shall not be of metallic or chrome based material. It shall not be conductive. The minimum length of the hose shall be 1 meter, for hoses of internal diameter 10 mm to ensure an insulation resistance of at least 1 Mega-ohm at maximum operating temperature.

4.3 Proper Location of Equipment

4.3.1 Water heater and storage tank shall be located and connected so as to provide access for observation, maintenance, servicing and replacement. The working space needed for this purpose shall provide reasonably access, i.e. 76 cm x 76 cm (30 inches x 30 inches).

If the storage water heater is to be installed above the ceiling, a reasonably access i.e. 60 cm x 60 cm (24 inches x 24 inches) shall be provided, at the close vicinity of the water inlet, outlet and electrical connection.

4.3.2 The water heater shall be located such that other fixed appliances installed in the room are located out of reach by a person using the bath or shower.
4.4 Need for Pressure Relief Valves (PRV), Drain Valves, Temperature Limiting Devices and Dry Burn Protection

4.4.1 To reduce the risk of abnormally high and dangerous pressures in the hot water system and to reduce chances of a dangerous explosion, the water heater shall be incorporated with PRV, drain valves and temperature limiting devices as required by MS 1597-2-35:2010 or MS 1597-2-21:2015 as applicable.

4.4.2 The discharge of PRV shall be connected to the drain and shall be ensured of no possibility to be blocked (no isolation valve shall be fitted). The water heater shall be protected against dry burn.

4.4.3 The PRV is recommended to be replaced with a new valve every five (5) years.

4.5 Inspection and Testing

4.5.1 The following shall be inspected and tested after installation: -

a) Inspect: visible mechanical damages or blockages;
b) Inspect: incorrect installation;
c) Inspect: loose termination;
d) Test earth loop impedance;
e) Functional Test: operation of the RCD; and
f) Mechanical Test: operation of MCB.

4.6 Insulation of Water Heater and Pipes

4.6.1 Insulation blanket for storage water heater and insulation wrap for the hot water pipes can reduce energy costs. It must be ensured that the insulation is placed adequately and properly maintained.

4.7 Mounting of Water Heater

4.7.1 For wall mounted storage water heater, only expansion bolts provided or recommended by the manufacturer shall be used. For solar water heater, the structure where the heater tank is seated shall withstand at least twice the weight of the fully filled tank. The orientation of water heater shall be in accordance with the installation instructions provided by the manufacturer.
CHAPTER 5: OPERATION AND MAINTENANCE OF WATER HEATER

5.1 Periodic Maintenance

5.1.1 It is recommended that periodic maintenance shall be carried out at least once every six (6) months.

5.1.2 The water heater systems shall be switched off using the maintenance disconnector prior to maintenance.

5.1.3 Periodic maintenance shall be carried out on the following aspects: -

a) Inspect the disconnector for signs of over-temperature;

b) Inspect the parts from the disconnector to the water heater for signs of water ingress;

c) Inspect terminations and tighten if necessary;

d) Check the installation earth loop impedance to ensure that it is not more than the maximum permitted value: -

i. If the installation earth loop impedance measured is 30% more than the last reading, carry out a detailed investigation and perform necessary remedial works.

e) Test the water heater’s RCD to ensure that its tripping mechanism is functioning.

5.1.4 All remedial works shall be carried out by qualified person or competent person as described in clause 4.1.1.c.

5.2 Periodic Checking of Operability of Earth Leakage Protection System

5.2.1 The RCD must be tested periodically, preferably once a month, by pressing the test button and resetting the devices. The RCDs involved for this purpose include: -

a) The RCD at the main switch board of the premise; and

b) The inbuilt RCD in the water heater itself.

5.3 Periodic Checking of Drain Valves and Proper Operation of Pressure Relief Valves

5.3.1 The water heater PRV shall be checked periodically for blockages.

5.3.2 The PRV of storage and solar water heater shall be checked for evidence of corrosion, leaks, improper installation, etc.
5.3.3 The PRV shall be manually operated at least once a year to make sure that it is working properly. To prevent water damage, the valve shall be properly connected to a discharge line which drains adequately and freely. While standing clear of the outlet (discharged water may be hot), the lever handle on the PRV shall be slowly lifted to allow the valve to operate freely and return to its closed position. If the valve fails to completely reset and continues to release water, immediately shut off the electrical power and the cold water inlet valve and call a qualified service technician.

5.3.4 The water heater systems shall be checked periodically for leakages.

5.4 Prevention of Dry Burn

5.4.1 The water heater shall only be switched on after the water heater is completely filled with water.

5.5 Setting of Thermostat Temperature

5.5.1 The optimal thermostat temperature set by factory for showering shall not exceed 60°C in order to prevent scalding and it shall not be less than 55°C to prevent bacterial infection, especially Legionnaires’ disease or Legionellosis.

5.5.2 If a water heater supplying hot water for showering is likely to operate above 60°C (i.e. solar water heater), a thermostatic mixing valve shall be installed to limit the outlet temperature at not more than 60°C.

5.6 Draining, Flushing and Descaling

5.6.1 It is recommended that the tank of storage water heater be drained and flushed every six (6) months to remove sediment which may build up during operation. To drain the tank:

a) Turn off the power to water heater;

b) Close the cold water inlet valve and open a nearby hot water faucet; and

c) Connect a hose to the drain valve and terminate it to an adequate drain.

5.6.2 The spray head of instantaneous water heater must be descaled regularly.
5.7 Energy Efficiency Guidelines

5.7.1 In general, instantaneous water heaters are more efficient than storage type water heaters. This is because storage water heaters have higher standby losses since the tanks are full of heated water at all times and are typically located away from points of use. Where hot water use is low (e.g., kitchenettes and office restrooms), installing instantaneous water heaters can save energy. In addition, their compact size allows them to be located near the point of use, further reducing heat loss through piping.

5.7.2 Water heater shall be properly sized since oversized water heater will cost more to purchase and will consume more energy due to the excessive cycle and higher standby power losses.

5.7.3 Insulation blanket for storage water heater and insulation wrap for the hot water pipes can reduce energy costs.

5.7.4 Setting a lower temperature for the heated water can also save energy. However, the temperature set must not be too low as Legionella pneumophila, the bacteria known to cause Legionnaires’ disease, can grow in water.

5.7.5 Reducing water heater temperature or turning off water heater or off during unoccupied periods also reduces energy consumption and costs. Besides that, installing timers or other load control devices in buildings with time-of-use rates or demand charges may also reduce energy consumption and cost.

5.7.6 For storage water heaters, it is recommended to be turned on for high-use periods and off during low-use periods, good savings can be realized.
Annex 1

Cases of Electrical Accidents involving Electric Water Heater

A.1.1 Earth conductor potential rise due to external faults

<table>
<thead>
<tr>
<th>Water heater type</th>
<th>Storage water heater</th>
</tr>
</thead>
<tbody>
<tr>
<td>Where</td>
<td>Residence</td>
</tr>
<tr>
<td>When</td>
<td>December 2011</td>
</tr>
<tr>
<td>Accident</td>
<td>Fatal accident where victim experienced electrical shock while taking a bath</td>
</tr>
</tbody>
</table>

Background

The water heater was not protected by any RCD with a residual operating current of 10mA. The water heater was of a model with approval from the Energy Commission.

Findings

Insulation resistance tests at site confirmed a short circuit in the house wiring. The short circuit had occurred in a circuit other than the water heater circuit. The electrical protection measures are not functioning.
A.1.2 Improper terminations at the water heater

<table>
<thead>
<tr>
<th>Water heater type</th>
<th>Storage water heater</th>
</tr>
</thead>
<tbody>
<tr>
<td>Where</td>
<td>Residence</td>
</tr>
<tr>
<td>When</td>
<td>September 2013</td>
</tr>
<tr>
<td>Accident</td>
<td>Potential rise of shower hose causing a fatal accident</td>
</tr>
</tbody>
</table>

Background

The water heater was only protected by an RCD with a residual operating current at the main switch board with a tripping current of 100mA. It was of a model with approval from the Energy Commission.

Water heater was rated at 2.5 – 3.0 kW. The water heater circuit had two units of 2-pole switches, modified for the circuit to have a 2 way switching arrangement. The cable supplying the water heater was of 1.25 mm² copper. The socket outlet and the cable in the water heater circuit were not of approved types.

Findings

The poor termination and the undersized wiring resulted in over heating at the termination point. This caused the cables to dislodge and for their insulation to be damaged. Subsequently the live cable touched the body of the water heater causing it and the parts connected to it to rise in potential. The RCD with a residual operating current at the main switch board was not functioning. Two victims received fatal shocks when coming into contact with the metallic part of the shower hose.

Figure A.1: The flow of the leakage current occurred during the accident.

Figure A.2 and **Figure A.3** shows the condition of the appliances and its wiring system that was affected by the accident.
This storage water heater was installed in May 2013. The cable supplying the water heater was of 1.25mm² copper. The use of 1.25mm² size cable for a load of 2.5 – 3.0kW is inappropriate. RCD located at DB-L14-A was not meant for this water heater.

RCD located at DB-L14-A did not trip which caused the current to flow to the body of the water heater tank and causing the whole body of the tank to be energised. This also caused the copper pipe connected to the tank to be energised.

The overheated N & E terminals caused both wires to dislodge and insulation to be damaged resulting in a floating voltage.

Any part that is touched/held, will lead to electric shock.

Figure A.1: The flow of the leakage current during the accident.
Figure A.2: The burnt condition of connector at the water heater.

Figure A.3: Metallic water heater hose that was still in an energized condition after the accident.
A.1.3 Use of conducting shower hose

<table>
<thead>
<tr>
<th>Water heater type</th>
<th>Instantaneous water heater</th>
</tr>
</thead>
<tbody>
<tr>
<td>Where</td>
<td>Residence</td>
</tr>
<tr>
<td>When</td>
<td>June 2015</td>
</tr>
<tr>
<td>Accident</td>
<td>Fatal and non fatal accident where victims experienced electrical shock when holding metallic shower hose in a bathroom and also while helping the electrocuted victim.</td>
</tr>
</tbody>
</table>

Background

The water heater was protected by RCD having residual operating current of 100mA and not 10mA as required under the law. The water heater was of a model with approval from the Energy Commission.

Findings

Short circuit from the other part of house wiring causes the body and the metallic shower hose of the water heater become live. This has electrocuted the victim when holding the metallic hose. At the same time, RCD with residual operating current of 100mA do not trip. One victim received fatal shocks and three other victims suffer injuries when coming into contact with the metallic part of the shower hose and touching victim’s body.

![Figure A.4: The flow of leakage current during the accident.](image-url)
A.1.4 Explosion of water heater

<table>
<thead>
<tr>
<th>Water heater type</th>
<th>Storage water heater</th>
</tr>
</thead>
<tbody>
<tr>
<td>Where</td>
<td>A resort</td>
</tr>
<tr>
<td>When</td>
<td>December 2014</td>
</tr>
<tr>
<td>Accident</td>
<td>Water heater exploded – a non fatal accident</td>
</tr>
</tbody>
</table>

Background

Water heater was installed around middle of 2010. It was of a model with approval from the Energy Commission. It was purchased from the supplier and installed by the client’s technician. The water heater had a guarantee period of 6 months.

Findings

There were no records of maintenance. There was no RCD with a residual operating current with an operating current of 10mA installed in the water heater circuit. The drain valve was found to be closed. (By referring to the water heater Operating Manual, the drain valve should always be in an open position).

The last user of the water heater did not/forgot to turn off the electricity supply to the water heater after using it.

The following safety features did not operate: -

i. PRV and Drain Valve (the drain valve was closed)
ii. Thermostat
iii. Thermal Cut-Out
Annex B

(Informative)

Illustration of earthing arrangement, protective conductors and protective bonding conductors
Key

M Exposed-conductive-part
Conductive part of equipment which can be touched and which is not normally live, but which can become live when basic insulation fails
[IEV 195-06-1-10]

C Extraneous-conductive-part
Conductive part not forming part of the electrical installation and liable to introduce an electric potential, generally the electric potential of a local earth
[IEV 195-06-11]

C1 Waterpipe, metal from outside

C2 Waste, water, metal from outside

C3 Gas pipe with insulating inset, metal from outside

C4 Air-conditioning

C5 Heating-system

C6 Waterpipe, metal e.g. in a bathroom

C7 Extraneous-conductive-parts in arm's reach of exposed-conductive-parts

B Main earthing terminal (main earthing busbar)
Terminal or busbar which is part of the earthing arrangement of an installation and enabling the electric connection of a number of conductors for earthing purpose
[IEV 195-02-33]

T Earth electrode
Conductive part, which may be embedded in a specific conductive medium, e.g. concrete or coke, in electric contact with the earth
[IEV 195-02-01]

T1 Foundation earth

T2 Earth electrode for LPS if necessary

1 Protective conductor
Conductor provided for purposes of safety, for example protection against electric shock
[IEV 195-02-09]

2 Protective bonding conductor
Protective conductor provided for protective-equipotential-bonding
[IEV 195-02-10]

3 Protective bonding conductor for supplementary bonding

4 Down conductor of a lightning protection system (LPS)

5 Earthing conductor
Conductor which provides a conductive path, or part of the conductive path, between a given point in a system or in an installation or in equipment and an earth electrode
[IEV 195-02-03]

NOTE: For the purpose of this standard, an earthing conductor is the conductor which connects the earth electrode to the point of the common equipotential bonding system, usually the main earthing terminal.
Acknowledgements

<table>
<thead>
<tr>
<th>NAME</th>
<th>ORGANISATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mohd Elmi Bin Anas (Chairman)</td>
<td>Suruhanjaya Tenaga</td>
</tr>
<tr>
<td>Ir Nur Ali Za bin Omar</td>
<td>Suruhanjaya Tenaga</td>
</tr>
<tr>
<td>Iffah Hannah Bt Muluk</td>
<td>Suruhanjaya Tenaga</td>
</tr>
<tr>
<td>Haji Abdul Aziz bin Abdul Rahman</td>
<td>Suruhanjaya Tenaga</td>
</tr>
<tr>
<td>Ir Fairus binti Abdul Manaf</td>
<td>Suruhanjaya Tenaga</td>
</tr>
<tr>
<td>Mohd Nawawi Said Abdullah</td>
<td>Suruhanjaya Tenaga</td>
</tr>
<tr>
<td>Ir Amir Hassan</td>
<td>Suruhanjaya Tenaga</td>
</tr>
<tr>
<td>Ir Amir Faisal Khamshah</td>
<td>Suruhanjaya Tenaga</td>
</tr>
<tr>
<td>Joanna Lenta Samana (Secretary)</td>
<td>Suruhanjaya Tenaga</td>
</tr>
<tr>
<td>Rohaida Bt Mat Lazim</td>
<td>Suruhanjaya Tenaga</td>
</tr>
<tr>
<td>Norsheila binti Idris</td>
<td>Suruhanjaya Tenaga</td>
</tr>
<tr>
<td>M. Zamri Mustaffa</td>
<td>SIRIM QAS International Sdn Bhd</td>
</tr>
<tr>
<td>Khairul Azhar Bin Abd Rahman</td>
<td>SIRIM QAS International Sdn Bhd</td>
</tr>
<tr>
<td>Amy Suraya Abu Samah</td>
<td>SIRIM QAS International Sdn Bhd</td>
</tr>
<tr>
<td>Marina bt Mahdar</td>
<td>SIRIM STS Sdn Bhd</td>
</tr>
<tr>
<td>Ir Francis Xavier Jacob</td>
<td>IEM</td>
</tr>
<tr>
<td>Ir Tejinder Singh</td>
<td>IEM</td>
</tr>
<tr>
<td>Ir Lim Kim Ten</td>
<td>IEM / TEEAM</td>
</tr>
<tr>
<td>Tee Tone Vei</td>
<td>TC5, WG2 / TEEAM</td>
</tr>
<tr>
<td>Ir Looi Hip Peu</td>
<td>TC10, TC7 / TEEAM</td>
</tr>
<tr>
<td>Ir Chew Shee Fuee</td>
<td>TEEAM</td>
</tr>
<tr>
<td>Ir Yau Chau Fong</td>
<td>TEEAM / IEM</td>
</tr>
<tr>
<td>Dr Che Hang Seng</td>
<td>TEEAM</td>
</tr>
<tr>
<td>Winnie Khong</td>
<td>TEEAM</td>
</tr>
<tr>
<td>Ho Khai Hong</td>
<td>TEEAM</td>
</tr>
<tr>
<td>Ir Ahmad Rashidi bin Zainudin</td>
<td>ACEM</td>
</tr>
<tr>
<td>M Azmi Bin Tahir</td>
<td>Panasonic</td>
</tr>
<tr>
<td>Chan Toong Mook</td>
<td>SEERS</td>
</tr>
<tr>
<td>Mohd Fairuz Bin Mohd Yusof</td>
<td>SEERS</td>
</tr>
<tr>
<td>Abd Aziz Bin Kadir</td>
<td>STIEBEL</td>
</tr>
<tr>
<td>Deric Tan</td>
<td>Nu-Vale Trading</td>
</tr>
<tr>
<td>Cheng Chee Sen</td>
<td>Maxvic Sdn Bhd</td>
</tr>
<tr>
<td>Chaw Huey Yen</td>
<td>Intrix Renewable Sdn Bhd</td>
</tr>
<tr>
<td>NAME</td>
<td>ORGANISATION</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Gan Kok Heng</td>
<td>KHIND</td>
</tr>
<tr>
<td>Boo Sian Cong</td>
<td>Aerogaz Sdn Bhd</td>
</tr>
<tr>
<td>Mazley Faizal Bin Mohamed</td>
<td>Bee Best Marketing Sdn Bhd</td>
</tr>
<tr>
<td>Andy Tan</td>
<td>Joven Electric Co. Sdn Bhd</td>
</tr>
<tr>
<td>Tan Joo Yee</td>
<td>Joven Electric Co. Sdn Bhd</td>
</tr>
<tr>
<td>Yeo Peng Hwa</td>
<td>United Alpha Industries Sdn Bhd</td>
</tr>
<tr>
<td>Lim Tow Hsing</td>
<td>Showertec Industries Sdn Bhd</td>
</tr>
<tr>
<td>Choo Wei Seng</td>
<td>Showertec Industries Sdn Bhd, WG2</td>
</tr>
<tr>
<td>Yeo Yao Sheng</td>
<td>Showertec Industries Sdn Bhd</td>
</tr>
<tr>
<td>Ng Eng Heng</td>
<td>Centonia Industries Sdn Bhd</td>
</tr>
<tr>
<td>Eric Lee Wai Mun</td>
<td>Centonia Industries Sdn Bhd</td>
</tr>
<tr>
<td>Mohd Basrullah</td>
<td>Centonia Industries Sdn Bhd</td>
</tr>
<tr>
<td>Leom Jiew Fook</td>
<td>Centonia Industries Sdn Bhd</td>
</tr>
<tr>
<td>Lee Kian Boon</td>
<td>Alpha Electric Co. Sdn Bhd</td>
</tr>
<tr>
<td>Tan Kok Wai</td>
<td>Alpha Electric Co. Sdn Bhd</td>
</tr>
<tr>
<td>Phyllis Lim</td>
<td>FIMACO Sdn Bhd</td>
</tr>
<tr>
<td>Nicholas Tang Sheng Ling Ng</td>
<td>FIMACO Sdn Bhd</td>
</tr>
<tr>
<td>Dylan Chua</td>
<td>ELECTROLUX</td>
</tr>
<tr>
<td>Cheong Kok Chun</td>
<td>Hitachi Sales (M) Sdn Bhd</td>
</tr>
<tr>
<td>Tony Leong</td>
<td>Persatuan Kekompetenan Penjaga Jentera Pendawai Elektrik Perak (PKPPE)</td>
</tr>
<tr>
<td>Ir Fong Chin On</td>
<td>Persatuan Kekompetenan Penjaga Jentera Pendawai Elektrik Perak (PKPPE)</td>
</tr>
<tr>
<td>Stanley Wong</td>
<td>Persatuan Kekompetenan Penjaga Jentera Pendawai Elektrik Perak (PKPPE)</td>
</tr>
<tr>
<td>Nick Liew</td>
<td>Persatuan Kekompetenan Penjaga Jentera Pendawai Elektrik Perak (PKPPE)</td>
</tr>
<tr>
<td>Wong Seak Wai</td>
<td>Persatuan Kekompetenan Penjaga Jentera Pendawai Elektrik Perak (PKPPE)</td>
</tr>
<tr>
<td>Chew Kam Hoong</td>
<td>Persatuan Kekompetenan Penjaga Jentera Pendawai Elektrik Perak (PKPPE)</td>
</tr>
<tr>
<td>Khaw Yee Kuan</td>
<td>Persatuan Kekompetenan Penjaga Jentera Pendawai Elektrik Perak (PKPPE)</td>
</tr>
<tr>
<td>Choong Soon Yein</td>
<td>Persatuan Kekompetenan Penjaga Jentera Pendawai Elektrik Perak (PKPPE)</td>
</tr>
<tr>
<td>Leong Kok Wah</td>
<td>Persatuan Kekompetenan Penjaga Jentera Pendawai Elektrik Perak (PKPPE) / TEEAM</td>
</tr>
</tbody>
</table>
MAIN OFFICE ADDRESS:

Energy Commission
No. 12, Jalan Tun Hussein, Precinct 2,
62100, Putrajaya.
Toll Free Number : 1-800-2222-78
Telephone : 03-8870 8500 Fax : 03-8888 8637

<table>
<thead>
<tr>
<th>REGIONAL OFFICE</th>
<th>ADDRESS</th>
<th>CONTACT</th>
</tr>
</thead>
</table>
| ST Regional Office (Pulau Pinang, Kedah & Perlis) | Tingkat 10, Bangunan KWSP, 13700 Seberang Jaya, Butterworth, PULAU PINANG | Tel: 04 - 398 8255
Fax : 04 - 390 0255 |
| ST Regional Office (Perak) | Tingkat 1, Bangunan KWSP, Jalan Greentown, 30450 Ipoh PERAK | Tel: 05 - 253 5413
Fax : 05 - 255 3525 |
| ST Regional Office (Kelantan & Terengganu) | Tingkat 6, Bangunan KWSP, Jalan Padang Garong, 15000 Kota Bharu KELANTAN | Tel: 09 - 748 7390
Fax : 09 - 744 5498 |
| ST Regional Office (Pahang) | Tingkat 7, Kompleks Teruntum, Jalan Mahkota, 25000 Kuantan PAHANG | Tel: 09 - 514 2803
Fax : 09 - 514 2804 |
| ST Regional Office (Selangor, Kuala Lumpur Putrajaya) | Tingkat 10, Menara PKNS, No. 17, Jalan Yong Shook Lin, 46050 Petaling Jaya SELANGOR | Tel: 03 - 7955 8930
Fax : 03 - 7955 8939 |
| ST Regional Office (Negeri Sembilan & Melaka) | Tingkat 3, Wisma Perkeso, Jalan Persekutuan, MITC, 75450 Ayer Keroh, MELAKA | Tel: 06 - 231 9594
Fax : 06 - 231 9620 |
| ST Regional Office (Johor) | Suite 18A, Aras 18, Menara ANSAR, 65 Jalan Trus, 80000 Johor Bharu JOHOR | Tel: 07 - 224 8861
Fax : 07 - 224 9410 |
| ST Regional Office (West Coast of Sabah) | Tingkat 7, Bangunan BSN, Jalan Kemajuan, 88000 Kota Kinabalu SABAH | Tel: 088 - 232 447
Fax : 088-232444 |
| ST Regional Office (East Coast of Sabah) | Tingkat 3, Wisma Saban, KM12 W.D.T. No. 25, 90500 Sandakan SABAH | Tel: 089 - 666 695
Fax : 089-660279 |