

Seminar To Enhance Energy Efficiency Initiative In Malaysia Through Legislation & Policy

ENERGY EFFICIENCY

Initiatives Towards Greener Malaysia

Ir. Hamdan Ali (hamdan-tnbes@tnb.com.my) TNB Energy Services Sdn Bhd 21 Oct 2014

ENERGY EFFICIENCY

Contents

Introduction

Energy Audit & Energy Savings Measures

TNB Initiatives & Case Studies

COMPANY BACKGROUND – TNB Energy Services Sdn Bhd

Nature of Business

- Main focus is services related to Green Energy Renewable Energy (RE) and Energy Efficiency (EE)
- Support TNB and Government in implementation of rural electrification program
- Support TNB in implementation of Green Initiatives

WHY ARE THERE ENERGY SAVINGS

How to uncover such savings

Through a systematic approach called ENERGY AUDITS

ENERGY AUDIT

ENERGY AUDIT APPROACH

Study on how a building or facility uses energy

Identification of savings / improvement measures

Recommendations & reporting of findings

ENERGY AUDIT PROCESS

ENERGY SAVINGS MEASURES

ENERGY SAVINGS MEASURES

No Cost or Low Cost	 Fine-tuning of building services User awareness Repair leaks Reschedule load/usage Understand & review tariff structure, MD, pf Saving potential 3-10%
Medium Cost	 Cooling system improvement Energy efficient equipment & technology Building envelope Monitoring & Targeting (Utilize BAS) Housekeeping / Proper Maintenance Saving potential 6-15%
High Cost	 Equipment technology change (e.g. high efficiency motor) System change Cogeneration BAS Saving potential >10%

Understanding Your Electricity Bills

Electricity Tariff Structure

- Customer categories
 - Residential, Commercial, Industrial
- Voltage Levels
 - Low (<1kV), Medium (6.6kV to 66kV), High (132kV and above)</p>
- Time of Use of Energy
 - Peak & Off-Peak for selected tariffs

Electricity Tariff Components:

- Energy (kWh) consumed during billing period
 - > Different rates for peak and off-peak periods
 - Peak period : 10.00pm to 8.00am
- Maximum Demand (kW) registered in a month
 - For medium and high voltage customers only
 - Applicable during peak period only
- Power Factor Surcharges
 - > For lower pf < 0.85 or < 0.9 (for high voltage customers)
- Others
 - Guaranteed maximum demand charge

5	TENAGA	L SERNA		в	IL ELE	IK II	KIK
STN	NO.AK	AUN		KOD	AMAU	4	NO. BIL
0122	0015654	8 02		6300225	460.00	3	26105595
LICENSE A	HMAD BIN 3						RU 2187
100223003	JLN TEMPU						
	I KERAMAT 1			DALATIN.	0110		
	1.1.101.0.111.11			an our charte			
0122001	5654802				1	2610559	6
-							
TAR			CIPMINIC		CATITAN B	BBAN	TERTING
025	1		:00			3679.00	
	-larif	f Cod					
PER	TRAL	TA	RIKH	AMD	UCN .	JENIS	BACAAN
BIL AKHER BAYARAN A	0.915		8-2006	53922			N
BANAROAN	UCHIN	HH-B	18-2006	27591	2.82		
AGARAN	TAMBAIL	ON TU	NGGAK	AN BA	YARAN DI	TERM	A SETAK/
6	2.00		163309.59		HH-B	3-2006	
NOTAN	GKA	MF	DAI	RULES	SEMA	SA,	KTRG
965950344	-M i	0000	35-66	5164.00	3839581	7.06	KWH
965950344	- M	0000		0.00	74085	8.74	кин-р
965950344	- M 1	0000		0.00	40800	18.74	KINH O
065950344	- 64	0000	1498	4609.00	1538588	68.32	KVARH
900800344	÷ M. 1	0000		0.00	54493	14.87	RWARH
965950344		0000		0.00		2.67	KW6-P
965950344	- M 1	0000		0.00	.216	11.33	KW-0
Max	imum D	ema	r-bn				
	CAL			INIT	KADAR.	A	MAUN
KEHENDAK	MAKSIMA		C 17	65.37	0.208	RM	27028 77
REGUNARN	PUNCAR		C7408	C 41.68	17.500	RM	6038.02
EGUNAAN	LUAR PUNCA	<	4595	157.81	8.500	FOM	5691.08
Cons	sumption	Dur	ing.				
Peak	Period	Horselan a	1000				
				-			
				Cor	nsumpti		hirina
-				Off	Peak P	erin	t in the second
					- ourse		
	and longer that						
MAUNEL		RM		42 BILSE 00 TUNG		RI	
	NANGGRN	RM			GANAN RAN TAMB		
ELBAGAI		RM	ő.	OD JUM I	ERLU DIB	and a second second	
ENALTE		TRM.		00	Contraction of the second second	1000	

TNB Electricity Tariff

Tariff Category	Unit	Old Rates (1 June 2011)	New Rates (1 January 2014)
2. Tariff B - Low Voltage Commercial Tariff			
For overall monthly consumption between 0-200 kWh per month: For all kWh The Minimum Monthly Charge is	sen/kWh <i>RM</i>	39.30 <i>7.20</i>	
For overall monthly consumption more than 200 kWh per month: For all kWh (from 1kWh and above) The Minimum Monthly Charge is	sen/kWh <i>R</i> M	43.00 <i>7.2</i> 0	
New Structure			
For the first 200 kWh (1 -200 kWh) per month For the next kWh (201 kWh onw ards) per month <i>The Minimum Monthly Charge is</i>	sen/kWh sen/kWh <i>RM</i>		43.50 50.90 <i>7.20</i>
3. Tariff C1 - Medium Voltage General Commercial Tariff For each kilowatt of maximum demand per month For all kWh <i>The Minimum Monthly Charge is</i>	RM/kW sen/kWh <i>R</i> M	25.90 31.20 600.00	30.30 36.50 <i>600.00</i>

Power Factor Surcharges

	Voltage < 132kV	Voltage => 132kV
PF	Surcharge (% of total bill)	Surcharge (% of total bill)
1.00	0%	0%
0.90	0%	0%
0.85	0%	7.5%
0.80	7.5%	15%
0.75	15%	30%
0.70	30%	45%
0.65	45%	60%
0.60	60%	75%
0.55	75%	90%
0.50	90%	105%
0.45	105%	120%
0.40	120%	135%

Why TNB Impose Low PF surcharges

- For the same active energy required, an electricity with supply system with low PF requires a higher current to be generated and supplied through the transmission and distribution system
- This will lead to an increase in equipment and cable costs and will result in higher energy loss in the power supply system

Power Factor

Equipment and appliances		cos φ	tan φ
Common loaded at	0%	0.17	5.80
induction motor	25%	0.55	1.52
	50%	0.73	0.94
	75%	0.80	0.75
	100%	0.85	0.62
Incandescent lamps		1.0	0
 Fluorescent lamps (uncomp 	pensated)	0.5	1.73
 Fluorescent lamps (comper 	nsated)	0.93	0.39
Discharge lamps		0.4 to 0.6	2.29 to 1.33
Ovens using resistance ele	menta	1.0	0
Induction heating ovens (co	mpensated)	0.85	0.62
 Dielectric type heating over 	ns	0.85	0.62
Resistance-type soldering r	nachines	0.8 to 0.9	0.75 to 0.48
Fixed 1-phase arc-welding:	set	0.5	1.73
Arc-welding motor-generati	ng set	0.7 to 0.9	1.02 to 0.48
Arc-welding transformer-red	ctifier set	0.7 to 0.8	1.02 to 0.75
Arc furnace		0.8	0.75

Fig. L6 : Values of cos φ and tan φ for commonly-used equipment

How to Improve PF

- Installing Capacitor Bank
- Capacitor bank provides the reactive power (kVAr) needed by the loads

Capacitor Bank Locations

- Central/Group Compensation Scheme
 - After the energy meter
 - Minimize / eliminate PF surcharge
- Individual Compensation Scheme
 - Near to the load
 - Minimize line losses and line loading
 - Minimize / eliminate PF surcharge

Why TNB Impose PF Surcharge - Simulated Results

- TNB Meter is located at Customer MSB
- Without Capacitor bank,
 - Customer MSB recorded 306kW, 303kVAR, pf = 0.71
 - Total generation 329kW, 333kVAr, pf = 0.70
 - Total losses 29kW

- Option 1 Capacitor bank installed at Customer MSB,
 - Customer MSB recorded 306kW, 177kVAr, pf = 0.87
 - Total generation 320kW, 196kVAr, pf = 0.85
 - Total losses = 21kW

- Option 2 Capacitor bank installed at Motor DB,
 - Customer MSB recorded 304kW, 179kVAr, pf = 0.86
 - Total generation 318kW, 198kVAr, pf = 0.85
 - Total losses = 19kW

kVA and Low PF

PF	kW	kVAr	kVA	Amps @ 415V
1.00		0	100	139.1 A
0.90	100 kW	48	111	154.4 A
0.80		75	125	173.9 A
0.70		102	142	197.6 A
0.60		133	167	232.2 A

 $VA = \sqrt{(W^2 + VAr^2)}$ Power Factor (PF) = W / VA

Potential Area of Savings - Lighting (Min baseline: MS1525:2007)

- Efficient Lighting Level
 - Based on activities (MS 1525:2007)
 - Task lighting
- Harvesting Daylight
 - Windows
 - Sky lights
 - Light shelves
- Select more efficient lamp & accessories
 - T5 fluorescent
 - LED tube
- Efficient operation of lighting system
 - Lighting zoning
 - Auto sensor
 - Other innovation

Lighting

Parameters	T8 FL	T5 FL	LED Tube
	(1200mm)	(1200mm)	(1200mm)
Bulb Wattage (W)	36W	28W	19W
Ballast	Electromagnetic	Electronic	None
(Type & Wattage)	9W	2W	
Mercury Content	4-6mg	3-4mg	None
Total luminaries	45W	30W	19 – 20W
wattage			
Expected running hours	10,000 hours	10,000 to 20,000	40,000 to 50,000
		hours	hours
			(lumens output
			deteriorates)
Warranty	None	Ballast only (for	2 to 3 years
		certain	
		manufacturer)	

Day lighting

SUSTAINABLE ENERGY MANAGEMENT

ENERGY EFFICIENCY BENEFITS

Energy efficiency has demonstrated, time and again, that

- ✓ It saves industrial firms money
- ✓ It increase reliability of operations
- ✓ It has a positive effect on productivity and competitiveness
- It can offer attractive financial and economic returns
- ✓ Reduces exposure to rising energy prices
- Increases security of supply

✓

then Why it is not happening?

CHALLENGES TO ENERGY EFFICIENCY

- Management focus is on production and not on energy efficiency
- Lack of information and understanding of financial and qualitative benefits
- Lack of adequate technical skills for developing and implementing EE measures and projects
- Poor monitoring systems and data
- ➢ First costs more important than recurring costs → disconnection between capital and operating budgets
- When EE knowledge exists it very often resides with individuals rather than with the company/ organization -> sustainability risk
- Defensiveness "I'm already doing a good job!"

Establishment of EMEER 2008 and implementation of Sustainable Energy Management System will certainly overcome the challenges

SUSTAINABLE ENERGY MANAGEMENT SYSTEM Six Key Concepts

- 1. Commitment
 - Roles and Responsibilities
- 2. Significant Energy Users (SEUs)
- **Energy Performance** 3. Indicators (EnPIs)
- 4. Opportunities List
- 5. Operational Control

Review 6.

TNBs' INITIATIVES

TNB GREEN ENERGY STRATEGY AREAS

 Research & Development (R&D)

5. Carbon footprint & reporting

CARBON FOOTPRINT INVENTORY

DEMAND SIDE MANAGEMENT AND ENERGY EFFICIENCY

Demand Side Management

- 1. District Cooling System
- Study and analysis on Demandside management which include study on potential customers for voluntary load reduction/ shedding during peak times by offering incentives, interruptible tariff etc.
- Study on the impacts of DSM in terms of CAPEX, OPEX, Risks hardware advancement i.e.
 Smart grids/meters

Energy Efficiency

- Circular/guideline enhancing EE practices in offices circulated in September 2011
- 2. EE studies and implementation to be conducted by Divisions.
- 20 TNB Offices have been selected for Energy Efficiency enhancement project till 2015
- Courses and training program for energy managers' development program

ANALYSIS ON DSM INCENTIVES IN ELECTRICITY TARIFF STRUCTURE

This is a pricing signal to encourage Demand Side Management (DSM). It is a method of load control to reduce energy consumption at peak period (normally occurs 1200 hr – 1700hr) and increase energy consumption during an off-peak period, thus levelise the load distribution profile.

- **Time of Day (TOD) tariff scheme** (peak/ off peak) to encourage consumers (LPC) to shift their operations towards off peak periods.
- Thermal Energy Storage (TES) incentive scheme discounts are given to these installations to operate at off peak times and promote load leveling
- Sunday Tariff Rider and Off Peak Tariff Rider provide incentive for consumers (LPC) to increase their operations during Sundays and off peak periods

EFFORTS IN RAISING GREEN AWARENESS

TNB supports Government's National Green Technology (GT) Plan in raising Green Awareness aspects:

- Public Awareness National Energy Awareness Campaign (e.g. SWITCH campaign with FOMCA, SAVE program with Malaysian Government), EE awareness during CLOP and Advertorial on Energy Efficiency (LAT Cartoon) in major newsprint
- TNB Staff Awareness EE practices in offices, GREENER Portal, awareness training programme, green articles in Tenagawan magazines

DATE	31/12/2013	PAGE	9
DAY	TUESDAY	SECTION	STRETS YOUR SPORTS

Washing machines canaums a lot of energy

Full loads will save energy by reducing the amount of tones you'll have to do your loandry.

TIP Y

Closing your windows and doers while your air conditioner is on, cools your room faster

Y More distalla at www.teb.com.mg

TIP1.

A full load of laundry saves energy And time. Westing mailtims consume a lot of averga Full loads still save everypy by roducing the amount of times you'll have to do your laundry.

TIP C+ Fill your kettle to the max level to

maximise your energy savings. Plate the meat set of every bail with a full kettle. And to one one error, they use helded optic is a Radi to beg it wave for larger.

. TIP7 -5-star appliances give you

Clean your air can filter to save more.

Vesting one in conditions like then know it rawing

efficiently by dileting energical art to flow aut.

TIP Z.

And sweat less.

5-stor sevines. S-star setted appliances are designed to man ment Material reducing your case

TIP 3-Clase windows to save energy. And keep cool. Chains your students and doors while your str tométioner 14 un, canda gour room featur

TIP 8-Give your fridge some space to breathe more. And consume less. Keep your refrigerator at least 10cm from the well. on server process such as the store, I posthering of your refrigerator can halp it run more Acarla

TIPT Save smart with energy-saving light bulbs. Emergy-sering light hallss canaonic has everys. and last larger.

· TIP 1-Switch off your computer to switch an the savings. Computers and implace and increases energy with on standing. Control share all completely to one care mark smartle

TIP11.

TIP13

TIP 5

Iran in bigger amounts to bring down your energy usage. frating legger hads of laundry at some realmes. He senant of trees you'l have to tree your clothes.

. TIP 10-Use outdoor light timers to prevent excessive energy usage. Instead of Serving your addisor highls on all right, tostall a timer to heap these are only when they need to be

Set your air can at 24°C for optimum coolness with higher savings.

Air conditioners consistent a lot of energy, Gatting the temperature between 21-20°C prevales aufflattent coding.

Use soutlights with motion sensors

installing metan answers can help sent energy by turning or your apprlights only also fing read to be.

while happing goer energy concernation down.

to brighten your savings.

Brighten up for less with T5 fluorescent lights. Closery Burnasset lights such as the 75 variants gravits ample brightness to light up your home while Concerning facts energy.

Setting a timer on your air con is a smart way to manage and save energy You do not seed the nit take meaning all night to alog coal. Try setting it is switch off a fair bases after year's faller calena in he more avery officiant

.TIP12

· TIP 14-

.TIP17. Keep your kettle clean to enjoy more savines. Lineatole or user hettle's beater element slows down the besting process. Clean it regularly to keep it naming more efficiently.

TIPIC

An organised fridge makes room for energy sevines. An uncluttered fridge allows and air to circulate more Month

TIP23

Dress right for cool asvines. Dressing oppropriately for the worther can help revises per arange interruption. Oness threat and Interhable shifting to keep and

More details at www.tnb.com.mu

TIPZY A higher energy rating means higher

energy savings. When buying electrical appliances, he same to lask out for Pie unargy rating label. Choose 5-ster retail appharese which are designed to use energy.

Switch to instant water heaters In save more energy. Unlike teek weter heaters, instant with heaters say more by beating up only when in use.

8

00

7 BRIGHT

SAVE §

ENERGY

Vily5 T0 >

TIPIT

Save smart with a cold weah Hot write makes your washing warding work a little herder. Getting user washing everyone to a cold washdurarer passifie will help some einetstartig.

+TIP25 Shade up your home to bring down usur bill. installing shades, drapps and history can existing the aning of external bact tota gair home, making it asster out

to test as the air conditioner.

TIP18.

.TIPZE-Cheese the clothes line over the druer.

The heavy electricity conservation of slattes drivers in only the breated chilles line still aerosa us till teles. Unite ser same another to dry your clothes will help you some more.

When choosing an air conditioner for your home remember to bay one that's oppropriate for the stars of the room.

TIPZO

TIPZT Manage your water pump to manage

your sevines. Pail or pond pumps tonsums a lot of purpy as they read to be on the larger particle of time. Tarrang them off other not in use will not done your electricity usage.

Your oir can size matters when it

comes to energy savings.

TIPZZ. Choose fans ever oir con to save

3

TIP15

Use energy saving water pumps to

The water pumps that beep per pends, separiums and puds rearing use us a fair lef of slactivisty. That's sity if

is important to get ones with energy efficient maters.

pump up your energy savings.

energy. Using fans instead of your sir conditioners to a simple but may effective may to call down your energy concernation.

TIPZI

Open up to natural light to save energy. Draw your curtains and blocks to let an an much notional light as possible to help save an interval highting seats.

FRIDAY 26 JULY 2013

Lighting Up Lives

TENAGA NASIONAL BEHHAD (200866-W)

The Star 25

CUSTOMER SATISFACTION PROPELS TNB ASPIRATIONS FORWARD

Ir. Kamaliah binti Abdul Kadir Senior General Manager (Customer Service) Distribution Division TNB

TENAGA NASIONAL

Powering the nation and serving up to eight million customers nationwide, Tenaga Nasional Berhad (TNB) is entrusted with the responsibility and social obligation to provide the basic right to electricity for every Malaysian household and industry.

Placing you, our esteemed customers, at the forefront of our business has enabled TNB to greatly strenghten our operations; enhance the quality of our services; bring forth greater efficiency innovation and productivity; and at the same time propelled us to becoming a world class utility company.

In the course of the next six months, this column intends to share valuable insights as well as knowledge on how you, our customers, can better benefit from savings on your electricity bill and the extensive suite of services offered by TNB. More importantly, each and everyone of you have the power to make a valuable contribution towards the global initiative of conserving energy.

In terms of primary concerns voiced by customers, the highest number of feedback received by TNB relates to the cost of energy usage.

customers is that the less you use the better. Being prudent with the use of energy translates into direct and significant savings on one's electricity bills. As a responsible and caring utility company, our biggest challenge at TNB is in trying to make consumers understand the benefits of energy conservation which is underlined by the two focal areas of energy efficiency and the pursuit of renewable energy resources. This is in support of a concerted global effort to reduce the consumption of energy and emissions of greenhouse gases.

Today, appliance manufacturers offer a wide range of energy efficient products from air-conditioning units, chillers and refrigerators, to even the use of energy efficient fluorescent lights to replace traditional incandescent light bulbs which uses more energy to provide the same degree of illumination. Switching off electrical appliances, not leaving appliances on stand-by mode or the simple act of switching off the room lights or fan when you leave all contribute to the lesser use of electricity.

As demand for electricity increases exponentially it places higher expectations on sufficient and uninterrupted supply.

Join us in the coming weeks as we discuss a variety of matters from safety at home and in the work place, electricity tariff structure, and consumption by electrical appliances to combatting the threat of vandalism and power theft. We also welcome feedback and invite you to share with us your views via our TNB Careline email at thcareline@thb.com.my.

You, are an important partner and with your understanding and co-operation, together, we can embrace this greater clobal objective of

TNB EE PROJECTS

- i. EE Initiatives for 6 TNB buildings (EA6)
- ii. Energy Audit for 15 TNB buildings (EA15)
- iii. EEC Services by TNBES

EE Initiatives for 6 TNB Buildings (EA 6)

- Background
 - Buildings audited: TNB HQ, Wisma TNB Jln Timur, TNB Shah Alam, TNB Kepong, TNB Seremban and TNB Cheras Jaya
 - Dec 2009 May 2010
- Energy Savings Measures
 - PF Improvement
 - Energy Monitoring System
 - EE Lighting
 - EE ACMV
- TNB Shah Alam
 - Installed & commissioned in Feb 2012
 - PF setting: 0.95 (from 0.75)
 - Savings: RM36k/year (13%)
- TNB Kepong
 - Installed & commissioned in July 2013
 - PF setting: 0.95 (from 0.71)
 - Savings: RM300k/year (25%)

- TNB Shah Alam
 - Installed & commissioned in Feb 2012
 - PF setting: 0.95

- TNB Kepong
 - 2 units of Cap Bank: Installed & commissioned in July 2013
 - PF setting: 0.95

• TNB Kepong (cont'd)

Energy Monitoring System (EMS)

- **TNB HQ Bangsar** ٠
 - Installed & commissioned in Aug 2013
 - Monitor and display electricity consumption for each floor in the building
 - Hourly/daily trending and monthly report
 - Create awareness to the tenants
 - Part of energy management system benchmarking, setting target, further improvement

VGA/HDMI Cable

Energy Monitoring System TNB HQ Bangsar (cont'd)

Energy Audit for 15 TNB buildings (EA15)

2012-2013

- i. General Info
- ii. Key findings
- iii. Energy Saving Measure

Energy Audit for 15 TNB buildings - General Info

List of buildings:

No	Building	GFA (m2)	Aircond area (m2)
1	TNB 2 Sentral	37,318	22,391
2	TNB Johor Bahru	23,663	15,378
3	TNB Generation HQ	20,179	7,587
4	TNB Alor Setar	18,677	11,403
5	TNB NLDC HQ	15,065	12,069
6	TNB Kuantan	14,334	7,310
7	TNB Kota Bharu	12,606	8,572
8	TNB Kangar	10,906	10,238
9	TNB Transmission HQ	5,436	5,134
10	TNB Jalan Anson	5,272	3,269
11	TNB Ipoh	4,348	4,200
12	TNB Melaka	4,080	3,484
13	TNB K. Terengganu	3,011	1,686
14	TNB Perda	2,721	1,796
15	TNB UPH HQ	1,838	1,746

45

Energy Audit for 15 TNB buildings - Key findings & Observation

Annualised Electricity Consumption

Electricity Consumption (kWh/year)

46

Energy Audit for 15 TNB buildings - Key findings & Observation

Building Energy Index (BEI)

Energy Efficiency buildings in Malaysia – [Building Energy Index (BEI)]

Energy Audit for 15 TNB buildings - Key findings & Observation

Types of Loads & Apportioning

Туре	Range (%)
ACMV	51 - 79
Lighting	10 - 21
Lift	1 - 2
Other	8 - 37

Energy Audit for 15 TNB buildings - Key findings & Observation

Prior Energy Saving initiatives/projects:

EEC campaign and promotion:

- Appointment of energy managers NLDC buildings
- Auto sleep mode for computers NLDC (Level 5)
- Energy savings stickers and poster
- Display of room temperature using Digital Thermohygrometer UPH building
- Utilization of energy savings electrical appliances (i.e. 5 Star ratings refrigerator)
- Electronic ballast & LED lighting Generation & UPH building
- □ VSD for Chilled water pump motor Generation building

Energy Audit for 15 TNB buildings - Energy Saving Measure

- Sustainable Energy Management System (SEMS)
- Power Factor Improvement
- **EE** Lighting
- ACMV

Energy Audit for 15 TNB buildings - Energy Saving Measures

Sustainable Energy Management System (SEMS) :

- □ In general, awareness on EEC are low
- Setup committee/workforce for EEC for each building (management policy, program, target etc.)
- Proposed activity/program:
 - Continuous awareness (talk, competition etc.)
 - Monitoring of energy usage e.g. monthly bills, online monitoring or energy monitoring system
 - Energy Audit & implement EEC projects
- Potential savings (annual):
 - 1% is achievable = 320,000kWh or RM99,840

Certification - Energy Management Gold Standard by AEMAS

Energy Audit for 15 TNB buildings - Energy Saving Measures

ACMV System :

- Improve maintenance (i.e. AHU room must be clean and clear at all times, air filter and fin coils must be clean)
- Chiller management turn off 1 chiller ½ hour earlier (also save water – e.g. TNB Kuantan), temp setting 24 deg Celcius
- Replace inefficient motor (measured/calculated efficiency 40 to 60%) for CW pump
- Install VSD for CW pumps & CT Fan
- Replace with new energy efficient chiller (i.e. EEI = 0.5kW/RT)

Energy Audit for 15 TNB buildings

- Energy Saving Measures

EE Lighting

T5 FL

□ 10,000 to 20,000 hours

□ ROI = 3 to 4 years

LED tube

□ 40,000 to 50,000 hours

ROI = 5 to 7 years

Voltage Optimization Device

TNBES EE PROJECTS TRACK RECORDS

Making It Happen, Getting It Done

OFFERED EE SERVICES BY TNBES

Energy Management & Regulatory

- EMEER (Efficient Management of Electrical Energy Regulation) 2008
 Compliance – Registered Electrical Energy Manager
- Sustainable Energy Management
 System (SEMS) Establishment &
 Implementation by Certified
 Energy Manager
 - AEMAS Energy Management Gold Standard Certification by ASEAN Centre for Energy
 - Comply with ISO 50001
 - Energy Monitoring System

Technical

- Energy Audit (EA) or Energy Review
 - 3 Types of EA offered:
 - Preliminary Audit, Detail Audit & Investment Grade Audit
- EE Solution e.g. ACMV, Pump System Optimization, Lighting system, Energy monitoring system etc
- Energy Measurement & Verification - (IMPVP)
- EE Package: Energy Audit + Solution
 - With EPC as optional
- Power Factor (PF) Improvement Solution
 - Analysis, design, install and post monitoring

DETAILED TECHNICAL SERVICES (AUDIT & SOLUTION)

- Energy Monitoring System

CASE STUDIES

NO COST/ LOW COST INVESTMENT

EEC Services/Projects by TNBES

- □ PF Improvement for OPC (less than 100A 3-phase)
 - Installation of Capacitor Bank LV Panel
 - Offer to TNB OPC
 - Ratings: 20kVAR to 45 kVAR
 - Payback 3 12 months

Power Factor for OPC – Case Study of Completed Project

Customer A (Sunway)

Commercial

- Average Monthly bill: RM6,800.00
- Average PF surcharge: RM1,400.00
- Savings: 21%
- Payback: 3 months

Customer B (Petaling Jaya)

- Workshop
- Average Monthly bill: RM2,000.00
- Average Monthly PF Surcharge: RM900.00
- Savings: 45%
- Payback: 5 months

Customer C (Subang)

- Apartment (Common Area)
- Average Monthly bill: RM3,900.00
- Average Monthly PF Surcharge: RM2,050.00
- Savings: 53%
- Payback : 2 months

LPC - 2012 - Office Building (11 Storey) – Kepong

Month	kWh	kVarh	Power Factor	Total PF surcharge	Monthly Electricity Bill
Nov-11	362,898	343,606	0.73	MYR 26,465.82	152,493.51
Dec-11	344,871	321,548	0.73	MYR 25,335.34	145,979.82
Jan-12	346,190	329,916	0.72	MYR 29,074.56	150,218.56
Feb-12	298,171	284,528	0.72	MYR 26,473.39	136,779.16
Mar-12	325,614	302,688	0.73	MYR 04,246.06	139,703.47
Apr-12	303,021	277,779	0.74	NYR 19,628.34	128,674.69
May-12	317,274	292,175	0.74	MYR 22,219.04	145,658.12
Jun-12	302,320	284,464	0.3	MAYR 24,719.42	142,430.96
Jul-12	301,126	285,537	0.73	MYR 24,706.46	142,356.27
Aug-12	275,342	265,41	A72O	MYR 26,292.82	135,846.22
Sep-12	292,060	277,296	0.73	MYR 24,395.28	140,563.30
Oct-12	310,523	299,335	0.72	MYR 29,194.46	150,838.03
Nov-12	296,686	170,960	0.87	-	118,155.23
Dec-12	29,,538	80,377	0.96	-	115,668.46
Jan-13	3 09,304	9 1,793	0.96	-	122,376.95
Feb-13	276,059	79,279	0.96	-	111,538.31
Mar-13	361,534	104,143	0.96	-	127,788.56
Apr-13	368,193	123,891	0.95	-	129,395.26
May-13	356,669	189,803	0.88	-	125,262.73
Jun-13	337,572	271,633	0.78	-	131,359.51
Jul-13	333,806	185,432	0.87	-	118,391.03
Aug-13	334,005	116,877	0.94	-	117,108.26
Sep-13	334,530	118,999	0.94	-	116,756.93
Oct-13	363,139	131,456	0.94	-	137,023.77

MYR 302,750.98

LPC - 2011 - Office Building (5 Storey) – Shah Alam

Month	kWh	kVarh	Power	Т	Total		Monthly
WOITIN	NVVII	NV alli	Factor	surcharge		El	ectricity Bill
Mar-11	113,728	89 <i>,</i> 286	0.79	MYR	3,604.71	MYR	43,657.02
Apr-11	109,405	83,523	0.79	MYR	4,179.69	MYR	50,620.65
May-11	118,002	93,747	0.78	MYR	4,374.94	MYR	46,041.05
Jun-11	109,427	88,965	0.78	MYR	4,839,28	MYR	50,927.62
Jul-11	109,302	87,718	0.78	MYR 🦯	4,089.24	MYR	43,034.38
Aug-11	134,322	109,500	0.78	MYR	4,805.64	MYR	50,573.66
Sep-11	100,270	82,087	0,77	MYR	4,338.30	MYR	40,490.78
Oct-11	112,038	95,165	0.76	MYR	5,351.05	MYR	44,988.43
Nov-11	118,626	102,517	0.76	MYR	5,523.19	MYR	46,435.74
Dec-11	95,934	77,662	0.78	MYR	3,604.59	MYR	37,933.98
Jan-12	117,121	100,692	0.76	MYR	5,519.60	MYR	46,405.52
Feb-12		51,235	0.86	MYR	_	MYR	31,606.35
Mar-12	101,000	33,665	0.95	MYR	_	MYR	35,931.98
Apr-12	1 0,744	31,604	0.96	MYR	_	MYR	39,312.57
May-12	106,806	32,070	0.96	MYR	-	MYR	37,723.76
Jun-12	115,915	34,288	0.96	MYR	-	MYR	40,514.66
Jul-12	121,876	39,783	0.95	MYR	-	MYR	42,638.24
Aug-12	107,986	34,989	0.95	MYR	-	MYR	38,494.34
Sep-12	97,711	28,158	0.96	MYR	-	MYR	35,606.93
Oct-12	117,483	37,256	0.95	MYR	-	MYR	41,038.03
Nov-12	117,250	36,225	0.96	MYR	-	MYR	40,899.14
Dec-12	115,704	37,369	0.95	MYR	-	MYR	40,406.03
Jan-13	122,256	39,743	0.95	MYR	-	MYR	42,747.68

MYR 50,230.22

EEC Services/Projects by TNBES

Registered Electrical Energy Manager (REEM) Services

- Law & Regulation Efficient Management of Electrical Energy Regulation 2008 (EMEER 2008) under Electricity Supply Act 1990 by Energy Commission
- Provisions of the regulation electrical energy intensive consumers and producers (>3,000,000kWh for 6 consecutive months) are required to engage a Registered Electrical Energy Manager (REEM)

TNBES has 3 REEM by EC & 6 CEM by AEMAS and 1 certified with IPMVP

Commercial Facilities (KL) Electricity Consumption & MD

Month		kWh				
WOITCH	2012	2013	2014	2012	2013	2014
Jan	1,212,876.00	1,190,845.00	1,198,347.00	2 <i>,</i> 355.00	2,453.00	2,248.00
Feb	1,076,601.00	1,052,423.00	1,002,790.00	2,250.00	2,259.00	2,164.00
Mar	1,196,175.00	1,155,036.00	1,043,418.00	2 <i>,</i> 499.00	2,262.00	2,033.00
Apr	1,176,547.00	1,168,741.00	1,103,338.00	2,596.00	2 <i>,</i> 458.00	2,439.00
May	1,113,206.00	1,211,379.00	0.00	2,208.00	2,468.00	0.00
Jun	1,062,817.00	1,162,671.00	0.00	2,220.00	2,379.00	0.00
Jul	1,130,240.00	1,232,153.00	0.00	2,233.00	2,386.00	0.00
Aug	1,125,995.00	1,233,924.00	0.00	2,320.00	2,329.00	0.00
Sept	1,098,675.00	1,209,393.00	0.00	2,223.00	2,339.00	0.00
Oct	1,183,926.00	1,219,492.00	0.00	2,300.00	2,373.00	0.00
Nov	1,156,093.00	1,166,204.00	0.00	2,428.00	2,301.00	0.00
Dec	1,203,844.00	1,177,442.00	0.00	2,370.00	2,216.00	0.00
Average:	1,144,749.58	1,181,641.92	1,086,973.25	2,333.50	2,351.92	2,221.00

1.0 Change Tariff

- Based on load profiling findings:
 - Peak hours consumption: 70%
 - Off-peak hours consumption: 30%
- Convert 11kV tariff from C1 to C2
- Estimated savings = ~RM12k per month

			Tariff C1	(new)			Tariff C2 (new)					
			kWh	MD		Distrik	oution	kWh-peak	kWh-off	MD		
Month	kWh	kW	0.365	30.30	Bill (RM)	Peak	Off- peak	0.365	0.224	45.10	Bill (RM)	Difference
Jan-14	1,198,347.00	2,248.00	437,396.66	68,114.40	505,511.06	0.7	0.3	306,177.66	80,528.92	101384.8	488,091.38	17,419.68
Feb-14	1,002,790.00	2,164.00	366,018.35	65,569.20	431,587.55	0.7	0.3	256,212.85	67,387.49	97596.4	421,196.73	10,390.82
Mar-14	1,043,418.00	2,033.00	380,847.57	61,599.90	442,447.47	0.7	0.3	266,593.30	70,117.69	91688.3	428,399.29	14,048.18
Apr-14	1,103,338.00	2,439.00	402,718.37	73,901.70	476,620.07	0.7	0.3	281,902.86	74,144.31	109998.9	466,046.07	10,574.00

2.0 Voltage Regulation

- Average supply voltage to equipment = 430V (Line voltage) or 248V (Phase voltage)
- Regulating (or reducing) supply voltage at optimum value (e.g. 220V to 230V) will :
 - Reduce energy consumption
 - Prolong lifespan of equipment
- Method to regulate (or reduce) supply voltage:
 - Option A (No Cost): Reduce tapping of transformer
 - Option B (Medium/High Cost): Install Voltage Regulator Device (also known as Energy Saving Device)
- Estimated energy savings: 10% to 20% (Reduction from 430V to 400V)
- Caution: Too low of supply voltage leads to malfunction of electrical equipment – proper engineering design is required (functionality, end of line supply, savings from other EE equipment etc.)

Summary of Identified ESM/EE Projects

Identified Projects	Annual Energy Savings (RM) per year	Estimated Cost (RM)	Simple Payback
Change Tariff from C1 to C2	RM140,000	No Cost	NA
Establish Energy Management System	RM50,000	RM50,000	1 year
Voltage Optimization: Option A: Reduce tapping transformer Option B: Install VO device	RM91,000 to RM182,000	Option A: No cost Option B (e.g.): RM250,000	Option B: 1.5 to 3 years
EE Lighting : Option A: Replace T8 to T5 Retrofit Option B: Replace T8 to LED Tube	Option A: RM409,635 Option B: RM1,024,000	Option A: RM1,964,740 Option B: RM3,940,000	Option A: 4.8 years Option B: 3.8 years

Commercial Data Centre (Cyberjaya) Change Tariff from C1 to C2

		Peak 8am-10pm	Off Peak 10pm-8am	1. C.	otal RM ariff C1		otal RM ariff C2	Total	C2-C1
Main Peak KWH	Main Peak KW	62% - Load Profile	38% - Load Profile		(Now)				
1,033,418.73	1,945.04	640,719.61	392,699.12	RM	344,169	RM	323,278	RM	(20,891
1,009,835.35	2,040.04	626,097.92	383,737.43	RM	339,651	RM	320,863	RM	(18,788
1,053,285.44	2,040.04	653,036.97	400,248.47	RM	352,164	RM	331,544	RM	(20,620
1,013,085.36	2,033.37	628,112.92	384,972.44	RM	340,427	RM	321,425	RM	(19,003
1,021,080.21	2,041.74	633,069.73	388,010.48	RM	342,930	RM	323,688	RM	(19,242
2,157,954.32	1,973.37	1,337,931.68	820,022.64	RM	668,714	RM	600,720	RM	(67,993
1,062,668.79	2,021.71	658,854.65	403,814.14	RM	354,428	RM	333,198	RM	(21,230
1,083,968.83	2,025.04	672,060.67	411,908.16	RM	360,642	RM	338,553	RM	(22,090
355,681.00	2,003.00	220,522.22	135,158.78	RM	150,368	RM	158,740	RM	8,372
1,086,272.00	1,960.00	673,488.64	412,783.36	RM	359,749	RM	336,803	RM	(22,946
1,105,320.00	2,103.00	685,298.40	420,021.60	RM	368,657	RM	346,577	RM	(22,080
1,034,561.00	2,027.00	641,427.82	393,133.18	RM	346,460	RM	326,477	RM	(19,983
1,100,637.00	2,082.00	682,394.94	418,242.06	RM	366,806	RM	344,678	RM	(22,128
1,121,203.00	2,148.00	695,145.86	426,057.14	RM	374,308	RM	352,083	RM	(22,225
1,153,873.00	2,049.00	715,401.26	438,471.74	RM	381,348	RM	356,589	RM	(24,759
1,105,971.00	2,045.00	685,702.02	420,268.98	RM	367,456	RM	344,672	RM	(22,785
1,160,767.00	1,991.00	719,675.54	441,091.46	RM	381,946	RM	356,219	RM	(25,726
1,171,802.00	1,968.00	726,517.24	445,284.76	RM	384,573	RM	358,113	RM	(26,460
1,121,325.00	1,969.00	695,221.50	426,103.50	RM	370,060	RM	345,741	RM	(24,319
1,192,842.00	2,065.00	739,562.04	453,279.96	RM	392,954	RM	366,738	RM	(26,216
1,188,005.00	2,080.00	736,563.10	451,441.90	RM	391,920	RM	366,083	RM	(25,836
1,192,024.00	2,069.00	739,054.88	452,969.12	RM	392,814	RM	366,680	RM	(26,134
1,184,618.00	2,054.00	734,463.16	450,154.84	RM	390,322	RM	364,325	RM	(25,997
1,109,756.00	2,146.00	688,048.72	421,707.28	RM	370,964	RM	349,198	RM	(21,766
26,819,954.03				RM	8,893,830	RM	8,332,986	RM	(560,844
		Average Price RM/	wh:		0.332		0.311		

Commercial Building (Cyberjaya) Change Tariff from B (low voltage) to C2 (Medium Voltage)

		Peak	Off Peak			To	tal RM		
		8am-10pm	10pm-8am	Tari	ff B (now)	Ta	riff C2	Total	C2-B
Main Peak KWH	Main Peak KW	61% - Load Profile	39% - Load Profile		0.397				
194,189.00	289	118,455.29	75,733.71	RM	77,093	RM	57,808	RM	(19,285
206,615.00	297	126,035.15	80,579.85	RM	82,026	RM	61,134	RM	(20,892
192,623.00	296	117,500.03	75,122.97	RM	76,471	RM	57,674	RM	(18,797
186,649.00	276	113,855.89	72,793.11	RM	74,100	RM	55,500	RM	(18,599
226,219.00	286	137,993.59	88,225.41	RM	89,809	RM	65,540	RM	(24,269
225,077.00	340	137,296.97	87,780.03	RM	89,356	RM	67,183	RM	(22,173
208,992.00	442	127,485.12	81,506.88	RM	82,970	RM	66,878	RM	(16,092
178,248.00	223	108,731.28	69,516.72	RM	70,764	RM	51,558	RM	(19,20)
172,140.00	222	105,005.40	67,134.60	RM	68,340	RM	50,028	RM	(18,312
234,253.00	201	142,894.33	91,358.67	RM	92,998	RM	64,480	RM	(28,519
146,633.00	229	89,446.13	57,186.87	RM	58,213	RM	44,035	RM	(14,178
171,947.00	213	104,887.67	67,059.33	RM	68,263	RM	49,660	RM	(18,603
201,391.00		122,848.51	78,542.49	RM	79,952	RM	56,687	RM	(23,26
188,916.00	188	115,238.76	73,677.24	RM	75,000	RM	52,922	RM	(22,07)
202,143.00	238	123,307.23	78,835.77	RM	80,251	RM	57,939	RM	(22,31)
191,581.00	198.5	116,864.41	74,716.59	RM	76,058	RM	53,948	RM	(22,10
206,456.00	334.8	125,938.16	80,517.84	RM	81,963	RM	62,441	RM	(19,522
171,503.00	271.9	104,616.83	66,886.17	RM	68,087	RM	51,648	RM	(16,439
216,903.00	198.8	132,310.83	84,592.17	RM	86,110	RM	60,156	RM	(25,95
204,404.00	211.2	124,686.44	79,717.56	RM	81,148	RM	57,538	RM	(23,610
194,154.00	219	118,433.94	75,720.06	RM	77,079	RM	55,308	RM	(21,77
174,151.00			67,918.89	RM	69,138	RM	50,007	RM	(19,13
183,829.00			71,693.31	RM	72,980	RM	52,130	RM	(20,850
251,979.00			98,271.81	RM	100,036	RM	69,163	RM	(30,873

4,730,995.00

RM 1,878,205 RM 1,371,365 RM (506,841)

EE Lighting Project for TNB Kepong, TNB Jalan Timur, & TNB Seremban

TNB Energy Services Sdn Bhd

September 2014

• To improve energy efficiency for lighting loads in the building

•To reduce energy consumption for lighting loads hence overall energy consumption of the buildings

•To provide awareness for building occupants on EE (reading of existing indoor temperature & humidity)

•To support TNB GREENER policy

Scope of Work

•Dismantling of existing T8 FL and its fitting (if any) and checking of wiring system

•Installation of new fitting (if any) for new efficient lighting

•Installation and commissioning of new efficient lighting complete with accessories (if any)

 Assessment on the performance of the new efficient lighting through inspection and energy consumption before and after installation

Project management

Lamp Replacement Work

Rewiring work to bypass the ballast and starter

Replacement Work

Brightness of Fluorescent T5 Retrofit (28W for 1200mm) tube after replacement

Lamp Measurement

Lux level was measured to compare the brightness of old and new lamps

Lamp Measurement

Measurement of energy consumption on the lighting

Lamp Measurement

Measurement of energy consumption on the lighting

Comparison of Load Consumption

Comparison of load consumption before and after EE lighting replacement at TNB Jalan Timur

	Parking	Office /	Area	
TNB Jalan Timur	FL (1200mm)	FL (1200mm)	FL (600mm)	Total Saving
Quantity	545	4404	519	
Average Load per Lamp				
- Existing 36w T8 FL 1200mm (W/unit)	40.24	44.12		
- Existing 18w T8 FL 600mm (W/unit)			31.82	
- New 28w T5 FL Retrofit 1200mm (W/unit)		30.61		
- New 14w T5 FL Retrofit 600mm (W/unit)			24.09	
- New 16w LED Tube 1200mm (W/unit)	16.17			
Saving (%)	60%	31%	24%	35%
Operating Hours per day	24	12	12	
Saving (kWh/year) with 365days/year	114,921.17	260,669.19	17,565.79	393,156.15
Saving (RM/year)	41,946.23	95,144.25	6,411.51	143,502.00

Saving

Based on the Energy Saving Measurement & Verification (M&V), energy saving obtained from EE lighting work for the three buildings are as follows:

Building	Saving	Percentage of Saving (Based on Lighting Load only)	Percentage of Saving (Based on Total Load)	Payback Period (Year)
TNB Kepong	181,716.41 kWh/year (RM 66,326/year)	41%	6%	2.7
TNB Jalan Timur	393,156.15 kWh/year (RM143,502/year)	35%	5%	3.6
TNB Seremban	88,691.18 kWh/year (RM32,372/year)	42%	6%	3.8

TNB ENERGY SERVICES SDN. BHD.

POWER QUALITY (PQ) SERVICES

Why PQ Services?

? PQ Packages:

- * To overcome PQ incidence
- or to minimize impact during
- PQ incidence
- · Avoid hefty losses

- PQ Monitoring System
 PQ Load Consultancy
- (Testing & Mitigation strategy)
- PQ Mitigation project
- PQ Training

GEARING FOR BUSINESS EXPANSION

TNBES to build a profitable and sustainable Green Energy business within Malaysia, and to capitalise on Asian and Middle East business opportunities

 30

CONCLUSION

- Conserve energy & efficient usage understand parameters that affect specific equipments energy usage, be knowledgeable, be innovative
- Be 1st Class Maintenance mentality
- Reuse, Reduce, Recycle
- TNB is fully committed towards RE & Green Energy, aims to become a primary driver of Green Energy in Malaysia by 2015
 - > Embarked on a numerous RE, DSM and EE projects
 - > Embarked on public awareness and knowledge dissemination
 - Training and Capacity Building (ILSAS, Uniten/IEPRE, TNBR)

