Sub-standard Cables Challenges & Way Forward

Lokman A. Dahlan Technical Advisor

Electric cable design requirements

- Satisfies **power** needs
- Flexible
- Reliable
- Has LONG life
- Minimal maintenance
- Economic

Basic Elements

- CONDUCTOR determines base current ratings
- INSULATION determines voltage / stress levels
- PROTECTIVE LAYER(S) determines protection level & installation conditions

Um (max voltage)	Class	Ref Stds & Sp	ecifications	Control on Quality & Inspection	Risk
Om (max voltage)	Class	Existing/Prev	New	Control on Quality & Inspection	NISK
Above 170kV	EHV	Utility	Utility	High scrutiny at all levels	Nil
37kV - 170kV	HV	IEC/Utility	IEC/Utility	High sampling rate of test & inspection	VLow
3.7kV - 36kV	MV	BS/IEC/Utility	IEC/MS	Adequate control on test & inspection	Low
1.2kV - 3.6kV	LV	BS/IEC/Owner	IEC/MS	Adequate control on test & inspection	Low

Um (max voltage)	Class	Ref Stds & Sp Existing/Prev	ecifications New	Control on Quality & Inspection	Risk
Below 1.2kV	ELV	BS/MS	MS	Minimum or no control	High

Overview of Standards & Quality of Cables

Um (max voltage)	Class	Ref Stds & Sp	ecifications	Risk	Control on Quality & Inspection
	01855	Existing/Prev	New	IVION	Control of Quality & hispection
Above 170kV	EHV	Utility	Utility	Nil	High scrutiny at all levels
37kV - 170kV	ΗV	IEC/Utility	IEC/Utility	VLow	High sampling rate of test & inspection

3.7kV - 36kV	MV	BS/IEC/Utility IEC	C/MS	Low	Adequate control on test & inspection
1.2kV - 3.6kV	LV	BS/IEC/Owner IEC	C/MS	Low	Adequate control on test & inspection

Below 1.2kV	ELV BS/MS	MS	High	Minimum or no control
-------------	-----------	----	------	-----------------------

STATISTIK PUNCA-PUNCA KEBAKARAN BANGUNAN BAHAGIAN PENYIASATAN KEBAKARAN JABATAN BOMBA DAN PENYELAMAT MALAYSIA TAHUN 2012 SELURUH MALAYSIA - Januari hingga Jun

									P	ENG	ELAS	AN PU	NCA P	KEBA	KARA	N							
KOD	KATEGORI	SEMU	LAJADI				KEN	IALAN	IGAN							SENG	AJA D	IBAKA	R			TIDAK	JUMLAH
KOD	BANGUNAN									SUM	BER N	IYALA	AN									DAPAT	SIASATAN
		SN1	SN2	SN3	SN4	SN5	SN6	SN7	SN8	SN9	SN10	SN11	SN3	SN4	SN5	SN6	SN7	SN8	SN9	SN10	SN11	DIPASTIKAN	
B1	Kilang / Bengkel	3	5	50	16	9	15	17	2	4	20	8	0	0	0	6	1	0	0	0	1	9	166
B2	Pejabat	2	0	49	14	1	5	5	0	0	0	1	0	0	0	6	0	0	1	0	0	3	87
B3	Kediaman	28	8	434	122	0	399	106	6	0	15	107	0	0	0	73	1	0	0	1	9	69	1,378
B4	Kedai	2	2	100	42	1	62	17	1	0	1	11	0	0	0	21	1	0	0	0	1	16	278
B5	Sekolah	7	0	31	13	0	4	3	0	0	1	4	0	0	0	3	1	0	0	0	1	2	70
B6	Pusat Membeli Belah	0	0	4	1	0	0	2	0	0	1	1	0	0	0	0	0	0	0	0	0	0	9
B7	Stor / Gudang	1	0	31	4	0	14	6	0	0	0	4	0	0	1	3	0	0	0	0	0	2	66
B8	Dewan Perhimpunan	0	1	9	3	0	4	1	0	0	0	0	0	0	0	3	0	0	0	0	0	0	21
B9	Hospital / Klinik	0	0	4	5	0	2	0	0	2	2	0	0	0	0	1	0	0	0	0	0	1	17
B10	Asrama / Hotel	2	1	17	5	0	6	3	0	0	1	1	0	0	0	3	0	0	0	0	0	1	40
B11	Stesen Minyak	0	0	3	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	6
B12	Struktur Khas	0	0	11	6	1	3	4	0	0	2	0	0	0	0	2	0	0	0	0	1	0	30
B13	Lain-lain Bangunan	1	4	66	8	0	21	10	0	1	5	18	0	0	0	6	0	0	0	0	2	7	149
	JUMLAH	46	21	809	240	12	535	174	9	7	49	155	0	0	1	127	4	0	1	1	15	111	2,317

* Pengkelasan kategori bangunan yang terbakar adalah berdasarkan kepada tempat bermula kebakaran (Fire Origin) atau tempat yang paling teruk terbakar (Worst Damage)

SN1	Kilat / Cahaya Suria	SN7
SN2	Tindakbalas spontan	SN8
SN3	Kegagalan sistem pendawaian elektrik	SN9
SN4	Kegagalan fungsi peralatan elektrik	SN10
SN5	Kesan geseran / hentaman	SN11
SN6	Api terbuka (Open flame)	

- N7 Api berbara (Glowing fire)
- SN8 Letupan
- SN9 Tindakbalas kimia
- SN10 Permukan bahan berhaba tinggi (Hot surface material)
- N11 Lain-lain

Controlled Items under Suruhanjaya Tenaga Category 31 – Wires / Cables / Cords

CATEGORY	ITEM DETAILS	REF STDS (Prev)	NEW MS
	Polyvinyl chloride (PC) insulated flexible cords	MS 136 : 1987 MS 140 : 1987 Equiv stds : BS/IEC/AS DIN/JIS/UL	Electric Cable and Wire - Polyvinyl Chloride (PVC) Insulated Cables of rated voltages up to and including 450 / 750 V MS2112-1:2009 Part 1 : General Requirements MS2112-2:2009 Part 2 : Test Methods MS2112-3:2009 Part 3 : Non-Sheathed Cables for Fixed Wiring MS2112-4:2009 Part 4 : Sheathed Cables for Fixed Wiring MS2112-5:2009 Part 5 : Flexible Cables MS2112-6:2009 Part 6 : Cables for Lift and Flexible Connections
	Rubber insulated cord and flexible cables	MS 140 : 1987	Under review, to retain under MS 140 : 1987

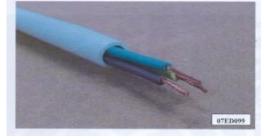
SUB-STANDARD CABLES

Cables which are not designed, constructed, test approved, installed or used in accordance to their prescribed standards and/or specifications

The development of national standards for electric cables takes into account the principles and norms as established internationally, current prevailing conditions and local practices. It is important to understand that these aspects are majorly unbeknown to buyers and users, hence <u>failure to comply on</u> <u>critical aspects may present an undetermined risk on safety.</u>

Anatomy of Sub-Standard Cables

PHOTOGRAPH OF TEST SAMPLE



a) Clause 5.1, 6.2, 7.2, 7.3, 7.4, 19.3 and 22.3 of MS 140: 1987 b) Clause 7.1, 7.2, 7.3 and 7.4 of MS 69; 1995 c) Tensile & elongation (before ageing) and resistance to crack of MS 138: 1995

 The test sample as described in this test report deemed to comply with the requirements of those test conducted except clause 7.2 and 7.4 of MS 69: 1995 and tensile & elongation (before ageing) of MS 138-1995.

REPORT NO.: 2007ED122 PAGE: 2 OF 8
The Third Table Tab

NOTES: 1. This is a partial test report

- All the tests were conducted at SIRIM QAS International Sdn. Bhd. And had been checked in accordance with the following clauses;
- a) Clause 5.1, 6.2, 7.2, 7.3, 7.4, 19.3 and 22.3 of MS 140: 1987 b) Clause 7.1, 7.2, 7.3 and 7.4 of MS 69: 1995 c) Tensile & elongation (before ageing) and resistance to crack of MS 138: 1995
- The test sample as described in this test report deemed to comply with the requirements of those test conducted except clause 7.2 and 7.4 of MS 69: 1995 and tensile & elongation (before ageing) of MS 138: 1995.

REPORT NO.: 2007ED123	PAGE: 2 OF 7
This Test Report refers only to samples submitted by the applicant to SIR Sdn. Bhd. This test report shall not be reproduced, except in full and sh written approval from Executive Director, SIRIM QAS International Sda.	all not be used for advertising purposes by any means or forms without
NOTES:	

1. This is a partial test report.

 All the tests were conducted at SIRIM QAS International Sdn. Bhd. And had been checked in accordance with the following clauses;

a) Clause 5.1, 6.2, 7.2, 7.3, 7.4, 19.3 and 22.3 of MS 140: 1987 b) Clause 7.1, 7.2, 7.3 and 7.4 of MS 69: 1995 c) Tensile & elongation (before ageing) and resistance to crack of MS 138: 1995

 The test sample as described in this test report deemed to comply with the requirements of those test conducted except clause 5.1 of MS 140: 1987, clause 7.2 and 7.4 of MS 69: 1995 and tenalle & elongation (before ageing) of MS 138: 1995.

Sub-Standard Cables - Data

Item	Flex		40/0.16mm 0/500V PVC/						
Reference		STD	07ED100	07ED099	07ED098				
Conductor									
- number of wires		40	39	38	38				
- resistance	ohm/km	26	29.8	69.3	112				
- equiv area	sqmm	0.731	0.638	0.274	0.170				
- cond diam	mm	1.061	0.991	0.650	0.511				
- total weight	gm/m	19.490	17.004	7.312	4.524				
Insulation									
 nominal thickness 	mm	0.56	0.65	0.75	0.95				
 weight per core 	gm/m	4.278	5.027	4.948	6.542				
- total weight	gm/m	12.834	15.080	14.843	19.625				
- core diam	mm	2.181	2.291	2.150	2.411				
- laidup diam	mm	4.711	4.949	4.644	5.208				
Sheath									
- overall diam	mm	6.4	7.07	6.89	7.36				
 nominal thickness 	mm	0.84	1.06	1.12	1.08				
- calc mass	litre	14.739	20.023	20.347	21.240				
- total weight	gm/m	21.371	29.034	29.504	30.798				
Cable overall weight	gm/m	53.7	61.1	51.7	54.9				

Sub-Standard Cables - Cost Analysis

07ED098

30

4.5

0.136

0.227

0.363

104%

07ED099 30

4.5

0.219

0.200

0.419

76%

Reference		STD	Í	07ED100	
Cu price	Myr/kg	30		30	
PVC price	Myr/kg	4.5		4.5	
Cu	Myr/m	0.585	Ī	0.510	
PVC	Myr/m	0.154	ľ	0.199	
Material cost	Myr/m	0.739		0.709	
ROS (material only)	Margin	0%	ĺ	4%	

"Sub-standard cables...

Its a lucrative business"

Danger in using inferior wires, says association

Items flooding the market of late do not conform to safety standards

KUALA LUMPUR, Wed: Think- thinking that he or she is buying ing of rewiring your home, or office? Before you spend your money, take note that there has been an influx of substandard wires and cables flooding the market of late.

. .

The Malaysian Electric Cable & Wires Association (Mecwa), the association representing Malaysia's wire and cable manufacturers, said today it will un-dertake a nationwide campaign to stamp out substandard cables and wires.

Mecwa president Datuk Kenneth H'ng said its members were aware of the increasing number of such home wires and cables in the market which do not conform to the quality and standards approved and recognised by the quality certification bodies.

"In addition, these cables are often packaged in short lengths duping the consumers into 100m but is, in fact, receiving less," he said in a statement.

H'ng said the low quality cables are a danger to the public, and the association is determined to approach the government and the standards authorities to get the products off the shelves.

"Substandard cables are a safety hazard. Consumers are being cheated when they purchase poor quality, falsely labelled product."

He said the association will recommend to the government that all wire and cable manufacturers attain the ISO 9001/9002 quality standard accreditation and that the authorities approve renewals based on successful quality accreditation.

He said the association will meet with elevant authorities, including Sirim, on the matter. - Bernama

THE STAR, DATERDAY 2 FEBRAUR

ane of the shop revisers also admitted to the authorities that

he had assembled the compo-rents at the back of his thop to

he have logo car be fixed up to

Lase choice.

Killer sockets, deadly fuses

Fake Sirim stickers on electrical items sold to developers

ELECTRICAL components such as were the main sense of should de-Determined, components data as were will find once which the outbour physics based on trans. "Available: "Weithing the rabies are builty and in the man-facts and fasts at homes and indicates and norm are being odd." Sina and the Demonstre Traffic Sinas and the Demonstre Traffic te contractors and developers of any forwarded Affairs Manistry hege baseing projects, reported made this shocking discovery to Bornet Electra

Kepnig no Thatsday. Day of the whitecators frond The paper said these products Out of the white-store frond wore manufactured idegails as having the electrical interviews a instantinge and all be as an 12 thirds organit is chellen your tarts and components. Ministry and Stem efficiels well Size usery productors Calling these "Aller sectors"

and county faces", the recoper they found it thorizing the Series per disclosed that such gradest). If there were being falsed and

What was even many shacking. the report said was that in-watgement showed that these Compiled by SHANANAA7 ADUE. TAN SIN CHOW unade electrical components were being sold to compacted and A. RAMOR and heating devolutions. reduction angest warship to betinduction law, the symetrol line presides found to have tability ag the the companents were

NEWS AVIEWS

perkakas elektrik di rumah yang l ibu pengguna. Diranamikan, peralat utu reosali buatan pengilang haran

Association: Low quality wires flooding market

KUALA LUMPUR: The Malaysian Electric Cable and Wires Association has warned the public to be wary of sub-standard wires and cables flooding the market.

Association president Datuk Kenneth H'ng, in making this revelation vesterday, said it would carry out a nationwide campaign to stamp out these sub-standard house wiring cables which had begun appearing in the market.

He said association members were aware of the rising quantity of such cables in the market which did not conform to the standards of certification bodies.

"In addition, these undersized and sub-standard cables are often packaged in short lengths so that consumers may think they're buying 100m but are, in fact, getting less," he said in a statement.

H'ng said the low-quality cables were dangerous to the public and the association was determined to approach the Government and the standards authorities for help.

"Sub-standard cables are safety hazards, and in addition, the consumers are being cheated when they buy poor quality, falsely-labelled products," he said.

H'ng said the association would recommend to the Government that all wire and cable manufacturers attain the ISO 9001/9002 quality standard accreditation.

He also called on the authorities to approve renewals based on successful quality accreditation. -Bernama

Treasury, Malaysia – Circular Letter SPP Bil. 7 Effective June 5th 2002

- Government agencies must ensure that specifications for local materials/goods used in all procurement exercise be based on Malaysian Standard (MS), issued by the Department of Standards Malaysia. If MS is not available for any particular materials/goods, other appropriate international standards or standards set by the Specifications Preparatory Committee of the agency concerned could be utilised
- Appropriate action including disciplinary action in the form of a "surcharge", will be taken against Government agencies and their principal officers for failing to comply with the ruling
- Errant contractors and consultants failing to comply would be penalised including being blacklisted and not being considered for other Government projects

MS-2112:2009

MS 2112 consists of the following parts, under the general title *Electric cable and wire - PVC insulated cables of rated voltages up to and including 450/750 V*:

•Part 1: General requirements

•Part 2: Test methods

•Part 3: Non-sheathed cables for fixed wiring

•Part 4: Sheathed cables for fixed wiring

•Part 5: Flexible cables

•Part 6: Cables for lift and flexible connections

Note : All cable types of conductor sizes up to and including 35 mmsq are controlled items under the Suruhanjaya Tenaga Malaysia

1Malaysia vs Sub-Standard Cables – The Way Forward

- **Ü** To review & establish MS standards for cables & wires in full compliance with international standards and with due consideration given to meet pertinent local requirements, conditions & practices
- Ü To publicize and promote the use of MS standards where available on cables and wires for domestic use, local installations and elsewhere by Malaysian contractors
- Ø To combat against the manufacture, importation and use of sub-standard cables in the interest of public safety and towards sustaining an equitable and economically viable business for the cable manufacturing sector
- Ø To support all measures by the relevant authorities including the imposition of clear labeling and the prohibition of retail selling of cables and wires without the MS standard mark of approval for items listed under the control of Suruhanjaya Tenaga (ST)
- ${f v}$ To advocate the registration of all local manufacturers under MCMA as a prerequisite to be a supplier of the ST controlled MS standard cables
- V To continually support and enhance the local economy and the Buy Malaysia campaign via the use of a wide range of cables in full compliance to applied standards, Made in Malaysia

Detecting Sub-Standard Cables (DIY)

- Check labels and markings for size, type, manufacturer name/logo and product standard
- Verify physical measurements against manufacturers' data
- Estimate the cross-sectional area of conductor by physical measurement i.e. area x number of wires
- Conduct a conductor d.c. resistance measurement to the Standards

MS-2112 : ELECTRIC CABLE AND WIRE - PVC INSULATED CABLES OF RATED VOLTAGES UP TO AND INCLUDING 450/750 V - PART 3: NON-SHEATHED CABLES FOR FIXED WIRING

Table 1, General data for type MS IV 01

Nominal cross- sectional area of	Class of conductor	Thickness of insulation	Mean over	all diameter	Minimum Insulation Resistance at 70 °C
conductor	MS IEC 60228	Specified value	Lower limit	Upper limit	
mm²		(mm)	(mm)	(mm)	(MΩ – km)
1.5	2	0.7	2.7	3.3	0.010
2.5	2	0.8	3.3	4.0	0.009
4	2	0.8	3.8	4.6	0.0077
6	2	0.8	4.3	5.2	0.0065
10	2	1.0	5.6	6.7	0.0065
16	2	1.0	6.4	7.8	0.0050
25	2	1.2	8.1	9.7	0.0050
35	2	1.2	9.0	10.9	0.0043
50	2	1.4	10.6	12.8	0.0043
70	2	1.4	12.1	14.6	0.0035
95	2	1.6	14.1	17.1	0.0035
120	2	1.6	15.6	18.8	0.0032
150	2	1.8	17.3	20.9	0.0032
185	2	2.0	19.3	23.3	0.0032
240	2	2.2	22.0	26.6	0.0032
300	2	2.4	24.5	29.6	0.0030
400	2	2.6	27.5	33.2	0.0028
500	2	2.8	30.5	37.0	0.0028
630	2	2.8	34.0	41.0	0.0025

Table 2, Tests for type MS IV 01

Ref No	Test	Category	Test method	described in
Kel NO	Test	of test	MS	Subclause
1	Electric tests			
1.1 1.2 1.3	Resistance of conductors Voltage tests at 2 500 V Insulation resistance at 70 °C	T, S T, S T	2112-2 2112-2 2112-2	5.1 5.2 5.4
2	Provisions covering constructional and dimensional characteristics		2112-2 and 2112-2	
2.1	Checking of compliance with constructional provisions	T, S	2112-2	Inspection and manual test
2.2	Measurement of insulation thickness	T, S	2112-2	4.6
2.3	Measurement of overall diameter	T, S	2112-2	4.8
з	Mechanical properties of insulation			
3.1 3.2	Tensile test before ageing Tensile test after ageing	T T	60811-1-1 60811-1-2	9.1 8.1, 3.1
3.3	Loss of mass test	Т	60811-3-2	8.1
4	Pressure test at high temperature	т	60811-3-1	8.1
5	Heat shock test	т	60811-3-1	9.1
6	Test of flame retardance	т	60332-1	

Non-Sheathed	Fire Resistant Cables
--------------	-----------------------

LOW SMOKE, ZERO HALOGEN, FLAME RETARDANT

Construction Conductor : Plain Annealed Copper to BS 6360 Fire Barrier : Mica Tape Insulation : LSZH Compound to BS 7655

Technical Data Reference Standard Voltage Uo/U Conductor Stranding Operating Temperature Minimum Bending Radius

BS 7211 450/750V Class 2 Maximum 90°C 6D

Single Core

TAI SIN LSZH TABLE 1

Code No.	Nominal Conductor Area mm ²	No. & Diameter of Wire No./mm	Radial Thickness of Insulation	Approx. Overall Diameter	i Approx. Weight	Minimum Insulation Resistant at 90°C MS2 * Km
34010010 34010020 34010000 34010000 34010250 34010350 34010350 34010500 34010950 34011200 34011200 34011850 34011850 34013000 34013000 34015000 34015000 34015000 34015000	1.5 2.5 4 5 10 16 25 35 50 70 95 120 185 240 300 400 500 630	7/0.53 7/0.65 7/0.85 7/1.95 7/1.70 7/2.14 7/2.52 19/1.78 19/2.52 37/2.25 37/2.25 61/2.25 61/2.25 61/2.52 61/2.52	0.7 0.8 008 100 1.2 1.4 1.4 1.6 1.6 2.0 2.2 2.4 2.8 2.8	3.6 4.2 4.8 5.3 7.7 9.5 10.7 12.4 14.2 16.5 18.1 20.1 22.4 28.2 31.6 35.1 39.1	27 39 55 76 124 286 382 515 721 991 1,232 1,512 1,890 2,467 3,081 3,917 4,910 6,263	0 010 0 009 0 0065 0 0065 0 0050 0 0043 0 0043 0 0043 0 0035 0 0035 0 0032 0 0032 0 0032 0 0032 0 0032 0 0032

Fire Resistant Cables

LOW SMOKE, ZERO HALOGEN, FL	AME RETARDANT	And the second se	300/500V	
Construction Conductor : Plain Annealed Copper to BS 6360 Fire Barrier : Mica Tape Insulation : XLPE Compound to IEC 60502-1 Sheath : LSZH Compound to BS 7655	Technical Data Reference Specification Voltage Uo/U Conductor Stranding Operating Temperature Minimum Bending Radius	IEC 60502-1 300/500V Class 2 Maximum 90°C 6D		TAI SIN LSZI

Code No.	-					No. & Diameter of Wire No./mm		Radial Thickness Insulatio			Radial Thickness of Sheath mm		Approx. Overall Diameter	i Appr Weig	
35010010 35010020 35010040		1 1 1	ХХХ	1.5 2.5 4		7/0.53 7/0.67 7/0.85	1	0.5		1	0.5	-	4.2 4.6 5.2	29 40 56	2
5020010 5020020 5020040	1	222	×××	1.5 2.5 4	1	7/0.53 7/0.67 7/0.85	1	0.5		-	0.8 0.8 0.8	1	7.9 8.8 9.8	90 111 16	B
5030010 5030020 5030040	1	mmm	× × ×	1.5 2.5 4	1	7/0.53 7/0.67 7/0.85	i.	0.5		1	0.8 0.8 0.8		8.4 9.3 10.5	110	5
5040010 5040020 5040040	2 2 1	4 4 4	×××	1.5 2.5 4	-	7/0.53 7/0.67 7/0.85	-	0.5		1	0.8 0.8 0.8	1	9.2 10.2 11.5	132 132 180 252	2
5050010 5050020 5050040	1	กกก	×××	1.5 2.5 4	1	7/0.53 7/0.67 7/0.85	1 1 1	0.5 0.5 0.5	20		0.8 0.8 0.8	1	10.1 11.2 12.7	156 213 300	5

Myths of Sub-Standard Cables

- Conductors are smaller due to "technological improvements"
- Copper purity is higher
- Able to withstand higher temperatures
- Able to take more current
- The standards have "changed"
- There is no problem, it still works

Sub-Standard [main] Element : Conductors

CRITERIA

- Metal content not meeting specifications (copper >99.9%, alum >99.7%)
- Undersized conductor does not meet the minimum cross-sectional area as determined by its specific resistance
- Construction not in accordance to prescribed standards on size & number of wires, buildup or dimensions

IMPACT

- Non-compliance to any of the above will result in conductor overload in excess of the maximum current loading of the cable
- This condition would lead to eventual breakdown of cable insulation, joints or connectors at installed positions or distribution boards
- Excessive overheating may result in short circuit conditions leading to an electrical fire

60228 @ IEC:2004

1	2	3	4	5	6	7	8	9	10	
	Mini	mum nun	nber of v	vires in t	he condu	ictor	Maximum resistance of conductor at 20°C			
Nominal cross- sectional	Circ	ular "	Circu compa		Sha	ped	Annealed cop	oper conductor	Aluminium or aluminium	
area	Cu	AI	Cu	А	Cu	AI	Plain wires	Metal-coated wires	alloy conductor ^c	
mm ²							Ω/km	Ω/km	Ω/km	
0,5	7	-	-	-	-	-	36,0	36,7	-	
0,75	7	-	-		-	-	24,5	24,8		
1,0	7		-		-	-	18,1	18,2	-	
1,5	7	-	6	-	-		12,1	12,2	-	
2,5	• 7	-	6	-	-	-	7,41	7,56	-	
4	7	-	6	-	-	-	4,61	4,70		
6	7	-	6	-	-		3,08	3,11		
10	7	7	6	6	-		1,83	1,84	3,08	
16	7	7	6	6	-	-	1,15	1,16	1,91	
25	7	7	6	6	6	6	0,727	0,734	1,20	
35	7	7	6	6	6	6	0,524	0,529	0,868	
50	19	19	6	6	6	6	0,387	0,391	0,641	
70	19	19	12	12	12	12	0,268	0,270	0,443	
95	19	19	15	15	15	15	0,193	0,195	0,320	
120	37	37	18	15	18	15	0,153	0,154	0,253	
150	37	37	18	15	18	15	0,124	0,126	0,206	
185	37	37	30	30	30	30	0,0991	0,100	0,164	
240	37	37	34	30	34	30	0,0754	0,0762	0,125	
300	61	61	34	30	34	30	0,0601-	0,0607	0,100	
400	61	61	53	53	53	53	0,0470	0,0475	0,0778	
500	61	61	53	53	53	53	0,0366	0,0369	0,0605	
630	91	91	53	53	53	53	0,0283	0,0286	0,0469	
800	91	91	53	53	-		0,0221	0,0224	0,0367	
1 000	91	91	53	53	-		0,0176	0,0177	0,0291	
1 200				ь		•	0,0151	0,0151	0,0247	
1 400 a				Ь			0,0129	0,0129	0,0212	
1 600				ь			0,0113	0,0113	0,0186	
1 800 ª				ь			0,0101	0,0101	0,0165	
2 000			-	ь			0,0090	0,0090	0,0149	
2 500				ь			0,0072	0,0072	0,0127	

Table 2 – Class 2 stranded conductors for single-core and multi-core cables

^a These sizes are non-preferred. Other non-preferred sizes are recognized for some specialized applications but are not within the scope of this standard.

^b The minimum number of wires for these sizes is not specified. These sizes may be constructed from 4, 5 or 6 equal segments (Milliken).

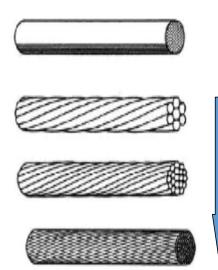
^c For stranded aluminium alloy conductors having the same nominal cross-sectional area as an aluminium conductor the resistance value should be agreed between the manufacturer and the purchaser.

- 10 -

R2 0300 : 1991

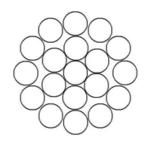
-

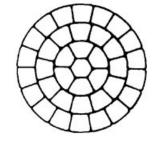
E.2 Conceptual constructions, nominal diameters of circular conductors and weights


NOTE. The term 'conceptual construction' is used for the conductor construction from which the specified maximum resistance values were originally calculated. The conceptual constructions are theoretically feasible constructions for uncompected circular conductors, not necessarily used in practice.

Additional data for annealed copper conductors and plain aluminium conductors of cables for fixed installations are given in tables 12 and 13 respectively. Additional data for flexible copper conductors are given in table 14.

Table 12. Additional data for annealed copper conductors of cables for fixed installations


Nominal cross-sectional	Conceptual construction no_/diameter	Nominal dismeter of equivalent	Equivalent stranded (class 2)	Nominal diameter of	Nominal m conductor	ass per km o
	of wires	tolid conductor (class 1) no./diamete conductor of wires		(class 2) conductor	Solid	Stranded
mm ²	-/mm	mm	-/mm	mm	kg	kg
0.5	1/0.80 1/0.97 1/1.13	Ξ	7/0.31 7/0.37 7/0.44	0.93	4.5	4.8 6.9
1.5 2.5	1/1.38 7/0.67 7/0.85	- 1.77 2.24	7/0.53	1.32 1.59 2.01 2.55	9.0 13.3 21.9 35.0	9.7 14.0 22.4 36.1
6 10 16	7/1.04 7/1.35 7/1.70	2.74 3.56 4.48	Ξ	3.12 4.05 5.10	52.4 88.5 140	54.0 90.8 145
25 35 50	7/2.14 7/2.52 19/1.78	5.64 6.64 7.72	Ξ	6.42 7.56 8.90	222 308 416	229 317 429
70 95 120	19/2.14 19/2.52 37/2.03	9.28 10.93 12.29	=	10.70 12.60 14.21	601 834 1055	620 860 1086
150 185 240	37/2.25 37/2.52 61/2.25	13.62	Ξ	15.75 17.64 20.25	1295	1334 1673 2199
300 400 500	61/2.52 61/2.85 61/3.20	=	Ξ	22.68 25.65 28.80	Ξ	2759 3528 4448
800 1000	127/2.52 127/2.85 127/3.20	=	Ξ	32.76 37.05 41.60	=	5744 7346 9260


Conductor Constructions

Solid

Stranded

Concentric, Non-compacted

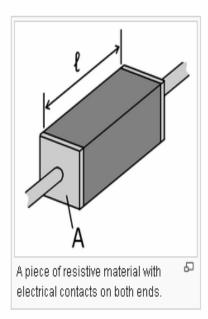
Compacted

Definition [edit]

Resistors or conductors with uniform cross-section [edit]

Many resistors and conductors have a uniform cross section with a uniform flow of electric current, and are made of one material. (See the diagram to the right.) In this case, the electrical resistivity ρ (Greek: rho) is defined as:

$$\rho = R \frac{A}{\ell},$$


where

R is the electrical resistance of a uniform specimen of the material (measured in ohms, Ω)

 ℓ is the length of the piece of material (measured in metres, m)

A is the cross-sectional area of the specimen (measured in square metres, m²).

The reason resistivity is defined this way is that it makes resistivity an *intrinsic property*, unlike resistance. All copper wires, irrespective of their shape and size, have approximately the same *resistivity*, but a long, thin copper wire has a much larger *resistance* than a thick, short copper wire. Every material has its own characteristic resistivity – for example, resistivity of rubber is far larger than copper's.

Conductor Metals - Cost per mho/km

Metals	VR @ 20°C	Density	Mass	1990	2015
	(W.mm²/km)	(gm/cm ³)	(kg/km)	(US\$/km)	(US\$/km)
Silver	16.4	10.5	172.2	29,205	116,044
Copper	17.2	8.89	152.9	255	799
Gold	24.4	19.3	470.9	3,925,590	19,789,913
Aluminium	28.3	2.7	76.4	110	112
Tin	124	7.29	904	4,742	14,122
Lead	214	11.4	2440	754	4,243

Aluminium & Copper Conductors

• Copper

- Highly Conductive
- Good Mechanical Properties
- Relatively Easy to Process
- Usually Annealed
- Aluminium
 - 60% conductance of copper at same size
 - Half the weight of copper at the same conductance

Controlled Items under Suruhanjaya Tenaga Category 31 – Wires / Cables / Cords

CATEGORY	ITEM DETAILS	REF STDS (Prev)	NEW MS
	Polyvinyl chloride (PC) insulated flexible cords	MS 136 : 1987 MS 140 : 1987 Equiv stds : BS/IEC/AS DIN/JIS/UL	Electric Cable and Wire - Polyvinyl Chloride (PVC) Insulated Cables of rated voltages up to and including 450 / 750 V MS2112-1:2009 Part 1 : General Requirements MS2112-2:2009 Part 2 : Test Methods MS2112-3:2009 Part 3 : Non-Sheathed Cables for Fixed Wiring MS2112-4:2009 Part 4 : Sheathed Cables for Fixed Wiring MS2112-5:2009 Part 5 : Flexible Cables MS2112-6:2009 Part 6 : Cables for Lift and Flexible Connections
	Rubber insulated cord and flexible cables	MS 140 : 1987	Under review, to retain under MS 140 : 1987

Class II Copper Conductors 0.5 to 35 sqmm

STANI	DARD - MS/	IEC/BS	ACTUAL - MIN				
cond	wire no.	max *	area	cond	wire		
size	min	ohm/km	sqmm	gm/m	gm/m		
0.5	7	37.11	0.479	4.258	0.608		
0.75	7	25.26	0.704	6.256	0.894		
1	7	18.66	0.953	8.468	1.210		
1.5	7	12.47	1.425	12.67	1.810		
2.5	7	7.639	2.327	20.68	2.955		
4	7	4.753	3.740	33.25	4.750		
6	7	3.175	5.598	49.76	7.109		
10	7	1.887	9.421	83.76	11.97		
16	7	1.186	14.99	133.3	19.04		
25	7	0.749	23.72	210.8	30.12		
35	7	0.540	32.90	292.5	41.79		

Basis of calculations :

✓ Volume resistivity of 17.241 ohm.mm²/km at 20°C with a division factor of 0.97 for hard-drawn copper

Ø Specific gravity at 8.89 kg/m³

Ø Resistance-temperature coefficient of 0.00393 /°C at 20°C

Factors at	Factors at specific temperatures for correcting									
resistance measurements to 20°C										
O°	°C factor °C									
20	1.000		28	0.970						
21	0.996		29	0.966						
22	0.992		30	0.962						
23	0.988		31	0.959						
24	0.985		32	0.955						
25	0.981		33	0.951						
26	0.977		34	0.948						
27	0.973		35	0.944						

The Malaysian Cable Manufacturers Association or MCMA (formerly known as the Malaysian Electrical Cable & Wire Assoc. or MECWA), was established in 1980 comprising manufacturers of power and telecommunication cables with the following objectives:

To provide a platform of communication and enhance the cooperation of all members on matters of common interest to the industry

To promote the products & services and activities of members locally and abroad via a common website and by participation in seminars, exhibition and conferences

To represent and safeguard the interest of members through channels of discussion and liaison with customers, government agencies and other organisations

To actively participate and contribute to the development of MS Standards on Electric Cables and related products

To enhance the reputation of MCMA as an ethical and responsible association of members with a positive contribution to the community

www.mcma.org.my

