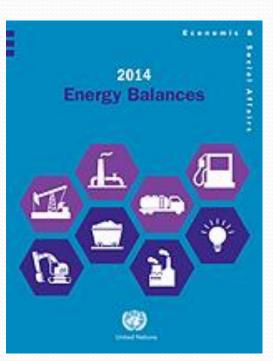


Energy Balances

Leonardo Rocha Souza


Workshop on Energy Statistics for ASEAN Countries

21-23 November 2017 Kuala Lumpur, Malaysia

http://unstats.un.org/unsd/energy

Energy balance methodology

The energy balance is a snapshot of all flows of energy products in an area (country) in a period of time (year).

It is presented in a common unit – terajoules, for example – and with products aggregated by category: coal, oil, petroleum products, gas, biomass, etc.

Some advantages:

- → It allows to compare the share of each source in the energy supply of a country and in each sector of the economic activity.
- → With an energy balance it is possible to analyse the efficiency of energy industries in a country.
- → Many relevant energy indicators can be drawn from an energy balance.
- → It provides a very effective 'extra check' on the data

Commodity balances

- A commodity balance describes all flows of a single energy product, where supply and uses can be measured and compared.
- Products are as defined by the current energy product classification – ideally harmonized with SIEC

Commodity balances

Commodity balances (and the UNSD energy stats questionnaire) display basic energy statistics only

 Basic energy statistics comprised of combinations of products and flows

- All flows relevant to a given commodity are grouped under the commodity header

What are the limitations of basic energy statistics?

- Different reporting units and different calorific values make statistics between commodities incomparable.

Hard Co	oal (CL); Metric tons, thousand	2011	2012
CL01	Production	34621	35375
CL03	Imports	9184	7821
CL04	Exports	33552	34648
CL06	Stock changes	-167	-138
CLGA	Total energy supply	10420	8686
CLSD	Statistical differences	-41	-1412
CL08	Transformation	8093	7730
CL088	Transformation in electricity, CHP and hea	4391	4037
CL0881	Electricity plants - Main activity producer	4390	4036
CL0881	Electricity plants - Autoproducers	1	1
CL081	Coke ovens	3702	3693

Motor Ga	soline (MO); Metric tons, thousand	2011	2012
MO01 🥕	Production	28587	29584
MQ03	Imports	4092	2938
MO04	Exports	5579	6086
MO06	Stock changes	-21	-96
MOGA	Total energy supply	27121	26532
MO12	Final energy consumption	30687	31676
MO122	Transport	30687	31676
MO1221	Road	30687	31676

Fuelwood	(FW); Cubic metres, thousand	2011	2012
FW01	Production	31200	30094
FW03	Imports	320	384
FW04	Exports	2555	2854
FW088	Transformation in electricity, CHP an	8532	8531
FW08812	Electricity plants - Autoproducers	8532	8531
FW1231	Households	11334	11569

Energy Balances

- The energy balance describes all the physical flows of energy that are embodied in energy products.
- These flows are expressed in a same energy unit (e.g., terajoule, tons of oil equivalent).
- It shows all relevant commodity balances together (grouped by types of products), displaying their interrelationships.
- Flows are defined by the current energy classification (be it particular to a country or common to the members of an organization)
 - The work of InterEnerStat and the International Recommendations for Energy Statistics (IRES) constituted a huge step towards harmonization of these classifications.
- While for the country the energy balance is mostly an energy policy tool, it can also be a tool for checking data consistency, because laws of Physics should be observed in the measured energy flows.

Energy balance →

Consumption of e.g. Inputs to secondary products transformation Production (primary) Transfers Manufacturing industries Production from other Transformation inputs / Transport sources outputs Other Imports Energy industries own use Non-energy use Exports Distribution losses International bunkers Middle Block Bottom Block Stock changes (Final Consumption) Top Block (Energy Supply) e.g. From other sources; exports of secondary products Direct use of primary products

e.g. Inputs to transformation

Consumption of products transferred

Production (primary+ secondary)

Production from other sources Imports Exports

International bunkers Stock changes

Top Block (Energy Supply)

Transfers

Transformation inputs Energy industries own use Distribution losses

Middle Block

e.g. Outputs of transformation

Manufacturing industries Transport Other Non-energy use

> Bottom Block (Final Consumption)

← Commodity balance

Energy balance Conversion to energy units

- Physical units (tons or m³) are converted to energy units using Net calorific values (NCV) [kJ/kg], which ideally are measured frequently for different processes and sources and then averaged for the country/flow.
 - Specific NCV for different flows, when available (most importantly, Production and Imports)
 - Weighted-average NCV for all other flows (if only NCVs for Production and Imports are available).
 - Default NCV if no information available (undesirable case)
- If commodities are reported in energy units (such as kWh for electricity or TJ for natural gas), the appropriate conversion to a common unit must be made

	Prod	ucts g	roupe	ed in	to typ	es		
			Shutan Terajoules					
	All Coal		tural Gas k	Primary piofuels / Waste	Charcoal	Electricity	Total energy	of which: renewables
2012		_						
Primary production	2547			45218		24575	72341	
Imports	-	6012			2112	132	8257	2112
Exports	-1202				-69	-17604	-18876	-69
International marine bunkers								-
International aviation bunkers		-74					-74	
Stock changes	Dri	mary	nrod	ucti	on or	alv -		
Total energy supply	1345	5939	pi Qu	43218	20-3	7103	61648	71837
Statistical Difference	0	-2		0	0	303	301	0
Transfers								
Transformation		+2		*-1535	826	1	* <u>-7</u> 10	*-709
Electricity plants		*-2)			1	→ *-1	
Charcoal plants				*-1535	826	<i></i>	*-709	*-709
Other transformation		0		0		/	0	0
Energy industries own use			Sacar	danz	produk	11 ala 11	andreat	
Losses			Secol	Juai y	produc	511911 ₄₈₀	eparted	-
Final consumption	*1345	5939	here/	*43684	*7859			
Final energy consumption	*1345	5917			1 C F Wil		*60185	*46553
Manufacturing, const., mining	*1345		transi	format	tion (n	eť valtu	e 6609	
Transport		5369					5369	
Road		983	-/-				983	
Domestic aviation			<i>[</i>				4	4
Domestic navigation			/ F	Positi	ve. el	betrie	·itv// -	1/
Other transport Final e	nerax	4386	/ •	Post	ye: el	Marc	4386	
Other	3p	547	/ - 0	#43F94	atec"	4106	*48206	*46553
Agriculture, for Charles U	mntibi	n with	/ 9				TEGICK!	DOSVA
Commerce and public services	ubudi	ı AAIÇII	. * o	omb	ustibl	o fu 8	173	
Households Agativ	a-tue	burner	y to- Y	1533t	SPORT	C CHIP	Wecan	1 0 2 46461
Other consume S	u Creda	itive: T	uelw	oodat	ransf	orme	363	
Non-energy use denerate	e elect	ricitez		asser	semi	ors	22	<u></u>
goriorat	THIN	charco	a					8

Efficiency of the transformation sector

	Primary coal and peat	Coal and peat products	Primary oil	Oil products	Natural gas	Biofuels and waste	Nuclear	Electricity	Heat	Total energy	of which: renewable
2016											
Transformation	-2201	270	-1680	1640	-300	-780	-67	870	587	-1661	-124
Electricity plants	-1601				-300		-67	701		-1267	
CHP plants	-300					-780		169	587	-324	-124
Heat plants										0	
Coke ovens	-257	240								-17	
Briquetting plants	-43	40								-3	
Liquefaction plants										0	
Gas works										0	
Blast furnaces		-10								-10	
NGL plants and gas blending			-200	190						-10	
Oil refineries			-1480	1450					A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.	-30	
Other transformation										0	
Energy industries own use	-87	-31	-30		-43			-89	-124	-404	X

- Sector-wise, you can have an idea of the transformation efficiencies by type of transformation, by using an energy balance
- However, you need more detailed energy statistics to know it more precisely (and specific NCVs!)
- And maybe microdata to know individual plant efficiencies

Importance of specific NCVs - emissions

	Coal (kt)	Default NCV	Specific NCVs	Coal (TJ) default NCV	Coal (TJ) specific NCV	Default emission factor for coal (t CO2/TJ)	CO2 (tons) default NCV	CO2 (tons) specific NCV
2016								
Primary production	131.8	25.8	20.10	3400	2649			
Imports	29.0	25.8	23.20	748	673			
Exports	-12.4	25.8	28.20	-319	-349	\		
Stock changes	-0.5	25.8	20.10	-14	-11	V X		,
Total energy supply	147.9	_ \		3,815	2,962	94.6	360,899	280,193

• 29% higher CO₂ emission estimates by using default NCVs

Renewable energy supply (% of TES) from energy balance – top block

country

					Terajoules						
	Primary coal and peat	Coal and peat products	Primary oil	Oil products	Natural gas	Biofuels and waste	Nuclear	Electricity	Heat	Total energy	of which: renewable
YEAR											
Primary prod.	3400		1234		345	4567	67	234	34	9881	4835
Imports	748	158	420	1024	180	10		81		2621	10
Exports	-319	-265	-101	-873	-40	-6		-12		-1616	-6
Int'l mar. bunkers				-28						-28	
Int'l av. bunkers				-78						-78	
Stock changes	-14		170	-81						75	
TES	3815	-107	1723	-36	485	4571	67	303	34	10855	4839

In this case, the indicator would be 4839/10855 = 44.6%

Renewable energy supply (% of TES) Importance on specific NCVs

	Primary coal	Biofuels and waste	Total energy	of which: renewa		
				ble	default	default
21	016				Coal NCVs	fuelwood NCVs
rimary production	3400	4567	9881	4835	25.80	9.135
ports	748	10	2621	10	25.80	9.135
ports	-319	-6	-1616	-6	25.80	9.135
ock changes	-14		75		25.80	
tal energy supply	3815	4571	10855	4839		
20	016					default
						NCVs
mary production	2649	4567	9130	4835		9.135
orts	673	10	2546	10		9.135
ports	-349	-6	-1646	-6	28.20	9.135
ock changes	-11		78		20.10	
tal energy supply	2962	4571	10002	4839		
2	016					Specific
						NCVs
mary production	2649	5749	10312	6017	20.10	11.50
orts	673	13	2548	13		11.50
ports	-349	-8	-1647	-8	28.20	11.50
ck changes	-11		78	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	20.10	
otal energy supply	2962	5754	11185	6012		

Based on an a assumption that the energy balance in the previous page was based on applying default NCVs from physical quantities:

- 25.8 GJ/ton for coal (other bituminous coal)
- 9.135 GJ/m³ for fuelwood (making all biomass)

Proportion of bioenergy in total renewable energy production (from balances)

country

					Terajoules						
	Primary coal and peat	Coal and peat products	Primary oil	Oil products	Natural gas	Biofuels and waste	Nuclear	Electricity	Heat	Total energy	of which: renewable
2016											
Primary prod.	3400	AAAAAAAAAAAAAAA	1234		345	4567	67	234	34	9881	4835
Imports	748	158	420	1024	180	10		81		2621	10
Exports	-319	-265	-101	-873	-40	-6		-12		-1616	-6
Int'l mar. bunkers				-28						-28	
Int'l av. bunkers				-78						-78	
Stock changes	-14		170	-81						75	
TES	3815	-107	1723	-36	485	4571	67	303	34	10855	4839

In this case, the indicator would be 4567/4835 = 94.5%

Proportion of bioenergy in total renewable energy production (specific NCVs)

	Biofuels and waste	Total energy	of which: renewa ble	default	
2016	6			fuelwood NCVs	Indicator
Primary production	4567	9881	4835	9.135	94.5%
Imports	10	2621	10	9.135	
Exports	-6	-1616	-6	9.135	
Stock changes		75			
Total energy supply	4571	10855	4839		
2	016			Specific NCVs	
Primary production	5749	10312	6017	11.50	95.5%
Imports	13	2548	13	11.50	
Exports	-8	-1647	-8	11.50	
Stock changes		78			
Total energy supply	5754	11185	6012		

Based on an a assumption that the energy balance in the previous page was based on applying default NCVs from physical quantities:

- 9.135 GJ/m³ for fuelwood (making all biomass)
- In this case, not a big difference because the indicator was already close to 100%

http://unstats.un.org/unsd/energy/