

Malaysian Grid Code

Part VII: Scheduling & Dispatch Code SDC1: Generation Scheduling

Ir. Mohd Yusrizal Mohd Yusof

Single Buyer Department

Tenaga Nasional Berhad

The Malaysian Grid Code Awareness Programme Funded by Akaun Amanah Industri Bekalan Elektrik (AAIBE)

SDC 1: Generation Scheduling SDC 1.1 : Introduction

- SDC 1.1 : Introduction
 Generation Scheduling : Scheduling of generators to meet demand, based on availability, parameters & cost, flexibility,
 - transmission constraints, security and system losses
- The schedule should be based on least cost operation for the grid system within the limitations mentioned above

Suruhaniava Tenada

SDC 1: Generation Scheduling SDC 1.1 : Introduction

No	Procedures	Affected Parties
1	Daily Availability Declaration	Generators, Single Buyer, GSO
2	SDP- Scheduling Dispatch Parameters for following Schedule Day	Generators, Single Buyer, GSO
3	Monthly, weekly, daily notification of power export availability/import request including price information	Interconnected parties, Single Buyer, GSO
4	Submission of certain network data by each User with a Network connected to the Transmission system to which Generating Units are connected (considerations for Network constraints)	Generators, Single Buyer, GSO
5	Submission of certain network data by each User with a Network connected to the Distribution Network to which Generating Units are connected (considerations for Network constraints)	Generators, Single Buyer, GSO

SDC 1: Generation Scheduling SDC 1.1 : Introduction

No	Procedures	Affected Parties
6	The submission by Users of Demand Control information (OC4)	Generators, Single Buyer, GSO
7	Agreement on Power and Energy flows between Interconnected Parties by the Single Buyer following discussion with GSO	Generators, Single Buyer, GSO
8	The production of Least Cost Generation Schedule – unit commitment and generation Dispatch level	Interconnected parties, Single Buyer, GSO

SDC 1: Generation Scheduling SDC 1.2 : Objectives

SDC1: To enable Single Buyer to prepare a schedule based on Least Cost Dispatch model. To include : Cost inputs, fuel constraints, hydro limitation and optimization of hydrothermal

> 1.Ensures Integrity of the interconnected transmission system

2. Ensures security of supply 3. Ensures sufficient generating capacity to meet transmission system demand as often as practicable with appropriate margin of reserve 4. Enables preparation and issue of a Generation Schedule

5. Enables optimization of the total cost of Grid System operation over a specific period taking into account of scheduled and forced outages and factors 6, 7 and 8

8. Maintains sufficient fuel stocks, optimizes hydro reservoir depletion and meet fuelcontract requirement 7. Enables use of energy from Hydro power stations to optimize system marginal cost with consideration for reservoir levels, riparian requirements and seasonal variations 6. Enables optimization of use of generating and transmission capacities

SDC 1: Generation Scheduling SDC 1.3 : Scope

SDC 1.4.1 : Procedure (Applicability) : Normal Working Day

15

D-1:

Users: To provide input for tomorrow Single Buyer : To produce Day Ahead Unit Commitment Schedule

D-day (Normal Working Day) : Operation day

The Malaysian Grid Code Awareness Programme Funded by Akaun Amanah Industri Bekalan Elektrik (AAIBE) 🚺 Suruhanjaya Tenaga

SDC 1.4.1 : Procedure (Applicability) : 1 Day Public Holiday

SDC 1.4.1 : Procedure (Applicability) : Weekends

Maximum of 4 non working days + 1 day after 4 consecutive non working days

The Malaysian Grid Code Awareness Programme Funded by Akaun Amanah Industri Bekalan Elektrik (AAIBE) 🕥 Suruhanjaya Tenaga 🌈

SDC 1: Generation Scheduling SDC 1.4.4: Least Cost Operation

- Day Ahead Plan: CDGUs on least system operating cost
- With considerations:
 - CDGU pricing : energy price only fuel cost + VOR
 - Hydro Thermal optimization : hydro based on year-end lake level target.
 - Operational restriction or CDGU flexibility
 - Fuel constraints gas, etc.
 - Max-min water-take for hydro CDGU for riparian
 - Energy export/import
 - Government fuel conservation policy
 - CDGU availability
 - Government fuel pricing policy
- Single Buyer to prepare :
 - Least cost unconstrained schedule
 - Least cost constrained schedule

SDC 1: Generation Scheduling SDC 1.4.5: Unconstrained Schedule

15

The Malaysian Grid Code Awareness Programme Funded by Akaun Amanah Industri Bekalan Elektrik (AAIBE) 🤇

🕥 Suruhanjaya Tenaga 🌈

1

3

SDC 1: Generation Scheduling SDC 1.4.5: Constrained Schedule

The Malaysian Grid Code Awareness Programme Funded by Akaun Amanah Industri Bekalan Elektrik (AAIBE) (

🕥 Suruhanjaya Tenaga 🌈

- Generators to highlight risks on CDGU such as fuel supply interruption or plants problem by 1000hrs each day
- Temporary changes to Registered Data, supplementary services
- Highlight details of re-commissioning /retesting plans
- Distributors to also highlight any constraints on its network to the Single Buyer

- Availability data declaration, Generation Scheduling & Dispatch Parameters and other relevant Generator data will be checked with Data Validity and Default Rules
- Data could be automatically amended if the data do not meet the requirements of the rules
- Failure to submit data by 1000hrs on each scheduling day, could result to utilization of previous data
- User is responsible in ensuring data is up-to-date and to notify Single Buyer of any changes

Daily Practice : Implementation

Least Cost Concept

Minimize Cost:

- Cost = Generator Fuel & VOM cost
 - + Generator Start Cost
 - + Contract Purchase Cost Contract Sale Saving
 - + Transmission Wheeling
 - + Energy / AS / fuel / capacity market purchase cost
 - Energy / AS / fuel / capacity market sale revenue

- The objective is to minimize generation cost, within various limitations/constraints
- The strategy is to pick the cheapest possible combination of generating units to serve the demand at all times

Input-Output

A unit commitment economic dispatch software (PLEXOS) based on mixed integer and dynamic programming method is utilized to solve this complex problem

- Traditionally, merit order list is utilized as a tool for dispatching.
- With advancement in computer technology, simulation software is now available to help us solving the unit commitment and dispatching
- Merit order: A ranking list of power plants, from the lowest cost per unit to the highest cost per unit (RM/kWh) at the maximum supply level of all plants

Discussion

Assume a grid system with the following units:

	Capacity		Heat rate (kJ/kWh)			VOR
Unit	MW	100%	75%	50%	25%	RM/MWh
A1	50	10100	10500	11200	NA	13.0
A2	40	10700	11200	11700	NA	13.5
B1	35	7700	8100	8600	NA	19.8
B2	40	7000	7600	8000	8200	16.2
C1	15	12000	12360	12731	15000	12.0
C2	15	11000	11330	11670	13800	11.5
D1	12	12500	12875	13261	14600	10.0
D2	10	10600	10918	11246	11583	11.0
D3	12	12500	12875	13261	14600	12.5
Total capacity	229					

Discussion

The total energy cost = Fuel + VOR are as follows:

	Capacity	RM/m	mbtu		Fuel co	st/kWh			Energy c	ost/kWh	
Unit	MW	Fuel	fuel price	100%	75%	50%	25%	100%	75%	50%	25%
A1	50	coal	14.38	0.14	0.14	0.15	0.00	0.15	0.16	0.17	0.00
A2	40	coal	16.00	0.16	0.17	0.18	0.00	0.18	0.18	0.19	0.00
B1	35	gas	25.00	0.18	0.19	0.20	0.00	0.20	0.21	0.22	0.00
B2	40	gas	25.00	0.17	0.18	0.19	0.19	0.18	0.20	0.21	0.21
C1	15	gas	25.00	0.28	0.29	0.30	0.36	0.30	0.30	0.31	0.37
C2	15	gas	25.00	0.26	0.27	0.28	0.33	0.27	0.28	0.29	0.34
D1	12	gas	25.00	0.30	0.31	0.31	0.35	0.31	0.32	0.32	0.36
D2	10	gas	25.00	0.25	0.26	0.27	0.27	0.26	0.27	0.28	0.29
D3	12	gas	25.00	0.30	0.31	0.31	0.35	0.31	0.32	0.33	0.36

The Merit Order list is as follows:

	Capacity	Total cost
Unit	MW	RM/kWh
A1	50	0.15
A2	40	0.18
B2	40	0.18
B1	35	0.20
D2	10	0.26
C2	15	0.27
C1	15	0.30
D1	12	0.31
D3	12	0.31

KEPHHHIA KEMENTERIAN TENAGA.

Discussion

Dispatch based on merit order:

Unit	MW Dispatched	Capacity	Energy (Cost/kWh	Total Cost
A1	50	50		0.151	7533.67
A2	40	40		0.176	7031.00
B2	40	40		0.182	7283.07
B1	35	35		0.202	7079.26
D2	10	10		0.262	2621.85
C2	15	15		0.272	4082.45
C1	10	15		0.314	3140.00
Total	200				38771.30

Cost = RM0.314/kWh @67% capacity

Unit	MW Dispatched	Capacity	Energy Cost/kWh	Total Cost
A1	50	50	0.151	7533.67
A2	40	40	0.176	7031.00
B2	40	40	0.182	7283.07
B1	35	35	0.202	7079.26
D2	10	10	0.262	2621.85
C2	15	15	0.272	4082.45
D1	10	12	0.305	3050.00
Total	200			38681.30

Second option (pick D1 instead of C1):

Cost = RM0.305/kWh @83% capacity

Savings of 0.2% of the total cost

Although Merit Order could still be used as an indication tool, utilization of software will allow various combinations to be assessed, hence resulting to a better cost optimization

The Malaysian Grid Code Awareness Programme Funded by Akaun Amanah Industri Bekalan Elektrik (AAIBE) 🤇

SDC 1: Generation Scheduling Future plan

- Single Buyer will reconfirm on all generators submission for the purpose of updating the software
- We will also request for additional outstanding inputs, start-up time, ramp-up/down, minimum stable operating level etc. (within the limits specified under the Malaysian Grid Code)
- We request full co-operation from all generators to ensure correct data, hence resulting to better modeling
- Inputs to improve our processes are always welcomed
- Our aim is to optimize the total system cost and prepare a useable schedule for GSO
- Having a good plan will allow us to anticipate future problems better, hence preparing a contingency plan well ahead to ensure lights is always on.

THANK YOU

mmohdyus@ tnb.com.my

The Malaysian Grid Code Awareness Programme Funded by Akaun Amanah Industri Bekalan Elektrik (AAIBE)

Rease use white font colour here

The Malaysian Grid Code Awareness Programme Funded by Akaun Amanah Industri Bekalan Elektrik (AAIBE) 🕥 Suruhanjaya Tenaga 🌈

Please use white colour font here

ltems	ICON
Scheduling & Dispatch	15
Data Registration	
Metering	or

The Malaysian Grid Code Awareness Programme Funded by Akaun Amanah Industri Bekalan Elektrik (AAIBE) 🌀 Suruhanjaya Tenaga 🌈

