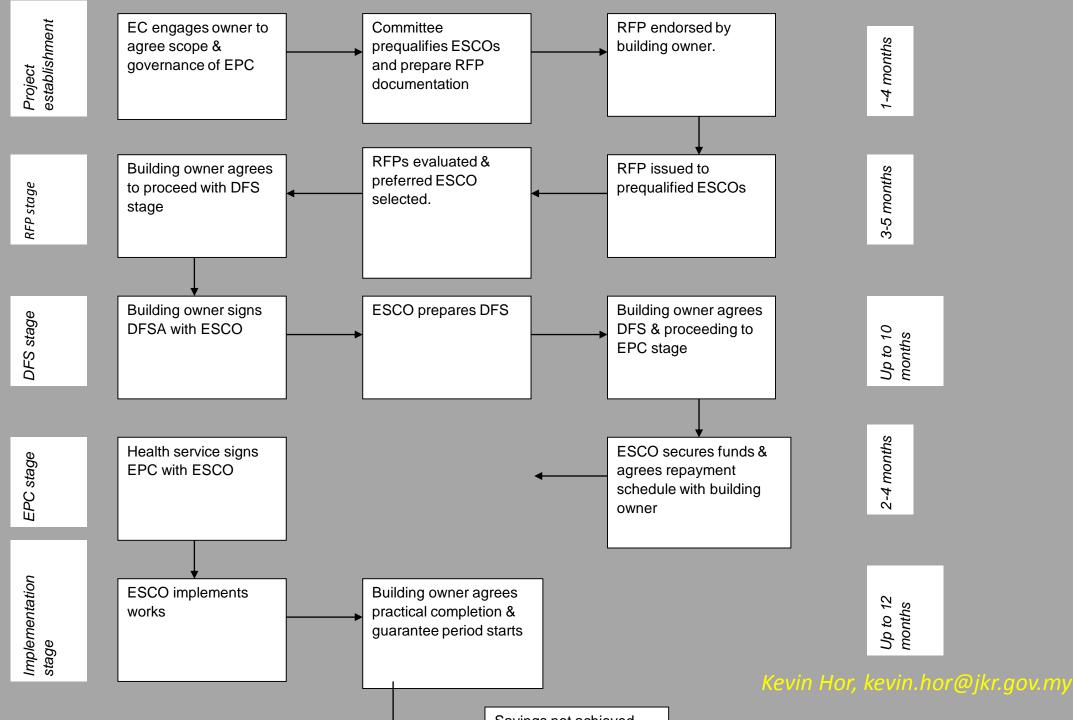
EPC development/suitability for the government sector and how it should be implemented.

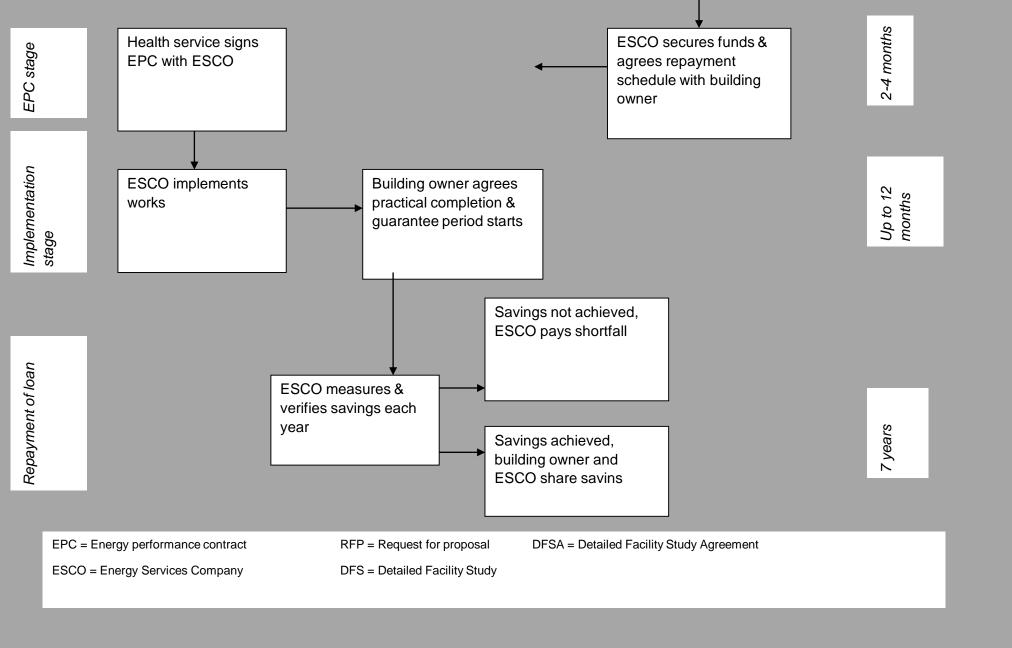
Ir. Kevin Hor

Project Manager - Building Sector Energy Efficiency Project

kevin.hor@jkr.gov.my & kevin.hor@undp.org



Government & Private Sectors



GOAL	Reduction in the annual growth rate of Greenhouse Gas(GHG) emissions from the Malaysia buildings sector				
OBJECTIVE	Improve energy utilization efficiency in Malaysian buildings (esp. commercial and government sectors) by :- 1. Promoting the energy conserving design of new buildings 2. Improving the energy utilization efficiency in the operation of existing buildings				
COMPONENTS	1.2. Policy Development and Regulatory Frameworks3. EE Financing Capacity Improvements4. Information and Awareness Enhancement5. Building EE Demonstrations				
OUTCOMES	1. Clear and effective system of monitoring and improving the energy performance of buildings				

EPC DEVELOPMENT

- Audit quality (IGA standard)
- Technical and Financial capability of ESCO
- Performance guarantee
- Operation and maintenance of equipment
- Contract template
- Measurement and Verification
- Ensuring long term savings

OPERATION OF GOVT BUILDINGS

- Relatively stable operating hours
- Clear directive for AC operating temperature
- Most have facility management companies who do not obtain upsides from energy efficiency however FM contracts will likely be longer in the future
- JKR producing a FM + EPC hybrid contract
- No contractual modality to allow for energy efficiency upsides
- Energy efficiency currently funded by owners

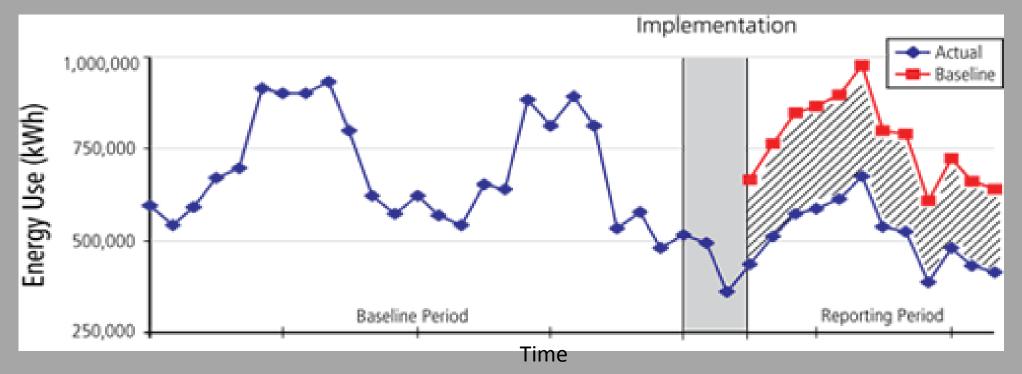
EPC DEVELOPMENT

- Audit quality
- Technical and Financial capability of ESCO
- Performance guarantee
- Operation and maintenance of equipment
- Contract template
- Measurement and Verification
- Ensuring long term savings

- EM training in January 2015 by BSEEP
- Imperative for successful execution and sustainability of EPC
- Failure likely without EnMS

EPC DEVELOPMENT

- Audit quality
- Technical and Financial capability of ESCO
- Performance guarantee
- Operation and maintenance of equipment
- Contract template
- Measurement and Verification
- Ensuring long term savings



Determining Energy Savings

- Savings are the absence of energy use.
- How do you measure something that is not there?
- Measurement and Verification (M&V) is the process of using measurement to reliably determine actual savings created within an Energy conservation project (ECP).
- BSEEP has trained CMVP professionals and will repeat in 2015

Determining Energy Savings

 Savings = Baseline Period energy – Reporting Period energy ± Adjustments

IPMVP – INTERNATIONAL MEASUREMENT AND VERIFICATION PROTOCOL

- Defines a framework and standard approaches for "measure savings" after implementation of a project
- Legitimizes Energy Service Company (ESCO) projects through recognition of the payment through savings
- Provides guidance on the trade-off between measurement accuracy and measurement cost (risk vs. cost)

EPC DEVELOPMENT

- Audit quality
- Technical and Financial capability of ESCO
- Performance guarantee
- Operation and maintenance of equipment
- Contract template
- Measurement and Verification
- Ensuring long term savings

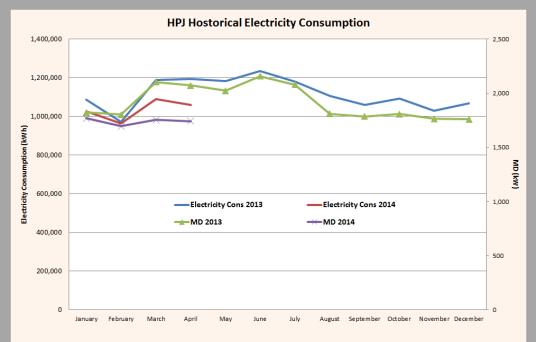
CERTIFIED PROFESSIONALS IN EPC

- January 6 to 16 2015
- www.eeperformance.org
- Developing a set of protocols for standardizing project development and documentation
- Addresses project performance risk
- Gaining traction in US, about to launch in Europe
- Want to build coalition in Asia to launch here

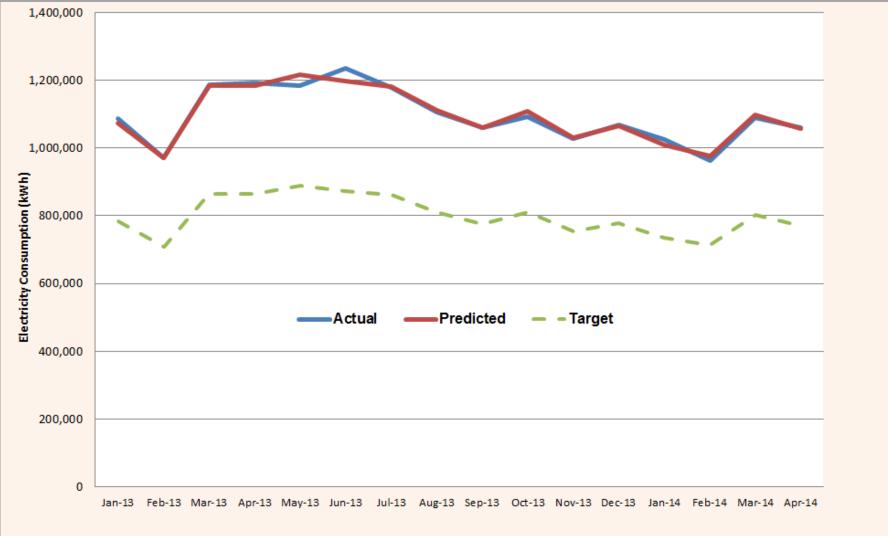
PUTRAJAYA HOSPITAL

- Detailed energy audit carried out
- Commissioned : Y-2000
- No of beds: 341
- Land Area: 25.74 acres
- GFA: 40,575m²
- AFA : 34,513m² (85%)
- C1 tariff

PUTRAJAYA HOSPITAL


- Operating Hour : 8am 5pm
- Electrical Supply
 - Electrical Distributors : Tenaga Nasional Bhd
 - Tariff : C1 (Medium Voltage General Commercial)
 - Unit Rate : RM 0.365/kWh
 - Maximum Demand : RM 30.30/kW-month
- Air Conditioning System
 - Mostly served by central water-cooled chiller system
- Lighting System
 - Mostly served by standard T8 fluorescent lamps
- Building Automation System
 - Out of Order

PUTRAJAYA HOSPITAL


Month	Electricity Consumption (kWh)		Maximum Demand (kW)		
	2013	2014	2013	2014	
Jan	1,086,420	1,026,206	1,824	1,769	
Feb	972,255	963,058	1,803	1,696	
Mar	1,187,696	1,089,844	2,104	1,755	
Apr	1,193,472	1,059,726	2,073	1,742	
May	1,182,929		2,024		
Jun	1,234,208		2,159		
Jul	1,179,895		2,079		
Aug	1,106,602		1,811		
Sep	1,060,077		1,786		
Oct	1,092,520		1,809		
Nov	1,028,443		1,763		
Dec	1,067,732		1,759		

Consumption 13,091 MWh/year MD 1,700-2,000 kW/month

BASELINE DETERMINATION

No	Measure	Savings		САРЕХ	P/back
		MWh	RM	RM	year
1	Cooling System				
1.1	Replacement / Upgrading of Chiller Plant				
1.2	Installation of VSD at AHU				
2	Lighting System				
2.1	Retrofitting of LED Lights				
2.2	De-lamping				
3	Controls				
3.1	Refurbishment of BAS				
4	Management System				
4.1	Establishment of Energy Management System (EnMS)				
5	TOTAL/AVERAGE				
			Kevin Hor. kevin.h	or@ikr.gov.mv	BSEE

EPC DEVELOPMENT

- Audit quality
- Technical and Financial capability of ESCO
- Performance guarantee
- Operation and maintenance of equipment
- Contract template
- Measurement and Verification
- Ensuring long term savings

Issues at Putrajaya Hospital

- There is an existing FM
- Loss of revenue to FM from ESCO installed equipment (except lighting)
- Would relationship between FM and ESCO be amicable?

IF FM CONTRACTS CANNOT PROVIDE UPSIDE

- Limited to retrofits which can be measured in isolation (Option A M&V) such as LED lighting retrofits or appliance upgrades
- Owners should never shy from renegotiating terms in FM contracts

SUITABLE EPC BUNDLES AND WHERE

- Large office buildings with stable operating hours (Putrajaya)
- Hospitals
- Underground structures/buildings
- Public transport infrastructures

Key Take Aways

WHEN TO BUNDLE EPC

- In public projects where energy simulation models were developed
- In projects where the FM is on board at the early stages
- Negotiate EPC upfront
- Provide upside in maintenance

EE PROJECT FINANCING OPTIONS

End-User

End-User using own Cash and/or Bank Loan and/or Grants

- EE equipment Vendor (leasing scheme to the End-User)Vendor using own Cash and/or Bank Loan
- ESCO (Energy Performance Contract with End-User shared savings)
 ESCO using own Cash and/or Bank Loan
- □Third Party EPC Financier
 - EEPs repackaged into SPVs under contract with ESCO & End-User

EE FINANCING MECHANISM

DEE financing mechanisms stuck in a "Catch-22" situation

- Financiers not willing to invest in EE capabilities without seeing high-level of deal flow
- Deal flow, in turn, hampered by lack of financing

Challenge: How to break the stale-mate?

 Requires a unique combination of technical, financial, deal structuring and business development expertise

Typical financing mechanisms

- Lending Programs
- Loan Guarantees
- Demand Side Management
- Energy Performance Contracting
- Third-party financing

PUBLIC INTERVENTION MECHANISMS

• INCENTIVES

- Government subsidies, grants, rebates etc.
- PROs: Useful to create interest and kick-start market;
- CONs: Expensive; How long should subsidies be extended? Sustainability issues
- Applicability: Useful to continue grants in conjunction with a new mechanism; maybe restructured as a 'Repayable grant' instead

• LENDING MECHANISMS

- Deployed by Thailand, India, Germany, Korea, Romania and others; Lent at market rates or subsidized rates; sometimes as revolving fund
- PROs: Easy to structure and implement loan mechanism; Creates liquidity in tight credit situations at cheaper cost
- CONs: Not effective as near-term solution if banking system doesn't have capability; Not effective when loans are already very cheap; Subsidized schemes do not price risk well
- Applicability: End-users reluctant to borrow for EE projects; ESCOs not credit-worthy to borrow; Banks do not have capacity, may not be effective as a near-term solution

PUBLIC INTERVENTION MECHANISMS

• LOAN GUARANTEES

- Deployed by Hungary , China and Others; Used as stand-alone mechanism or for credit enhancement in conjunction with other schemes
- PROs: Partial guarantees can align incentives and manage risks;
- CONs: Limited strength as a stand-alone tool, not as useful if banking system doesn't have capability
- Applicability: Needs to be combined with another tool like ESCO financing or third party financing to be effective;
- DSM
 - Deployed by countries like India and U.S.A; Peak energy demand management by capping/prioritizing consumption
 - PROs: Utilities understand EE best;
 - CONs: Conflict of interest (prefer to increase sales; Useful only in 'Energy shortage' situations
 - Applicability: limited due to over-capacity, market-priced electricity (ex: Singapore Tuas Power Supply Green Programme)

PUBLIC INTERVENTION MECHANISMS

• ESCO FINANCING

- Successfully deployed in U.S.A
- PROs: Commercially driven mechanism with optimal risk transfer; could reduce transaction costs
- CONs: Needs credit-worthy ESCO sector; FIs need to understand business model (capacity building)
- Applicability: Model capable of meeting needs of End-users, but needs changes to adapt to local ESCO and FI sectors, which are either nascent or lack capability

• THIRD-PARTY FINANCING

- Deployed in Bulgaria (BEEF), Belgium (FEDESCO), SPAIN (IDAE)
- PROs: Transfer of risks and responsibility of financing, technology and investment decision; Allows dealaggregation and reduces transaction costs; Transfers risk of deal structuring to qualified entities
- CONs: is not a silver bullet; May not appeal to all market participants;
- Applicability: Model capable of meeting most needs of all stakeholders if combined with 'information center' and 'regulation' and credit enhancement tool like 'loan guarantees'

BSEEP's Support to EPC

A For Profit Private Third Party Financing vehicle, guaranteeing performance, aggregating EE projects & kick-started by the government would address the shortcomings

- Malaysia Energy Efficiency Fund ("MEEF")
- US\$100-200m Public Private Partnership
- Provides 100% financing for EE Projects under a shared savings model
- Contractual agreements with end-users and ESCOs (EE as a Service)
- Commercially / Profit Driven
- Targets: Hotels, Shopping Malls, Offices, Hospitals, Schools, etc
- EE projects include equipment upgrades (chillers, lighting, VSDs...)
- Typical investment range is US\$0.5-10m / EE project
- MEEF assumes market, finance & credit risk
- ESCO implements and guarantees performance (technical risk)

BSEEP CAPACITY BUILDING

Date	Training event		
C 1C January 2015	Certified Professional in Energy Performance Contracting		
6-16 January 2015	(Core 5 days and technical 5 days) *Confirmed		
5-7 March 2015	Building Commissioning *Confirmed		
17 – 18 March 2015	Certified Lighting Efficiency Professional		
7-9 April 2015	Certified Energy Manager		
5-7 May 2015	Certified Energy Auditor		
2-4 June 2015	Certified Measurement and Verification Professional		
16-18 June 2015	Certified Building Commissioning Professional (CBCP [®]) Program		
7-9 July 2015	Certified Building Energy Simulation Analyst Certifications		
4-6 August 2015	Existing Building Commissioning Professional		
8-10 September 2015	Certified Residential Energy Auditor		

THANK YOU

For info and training, contact Kevin Hor

