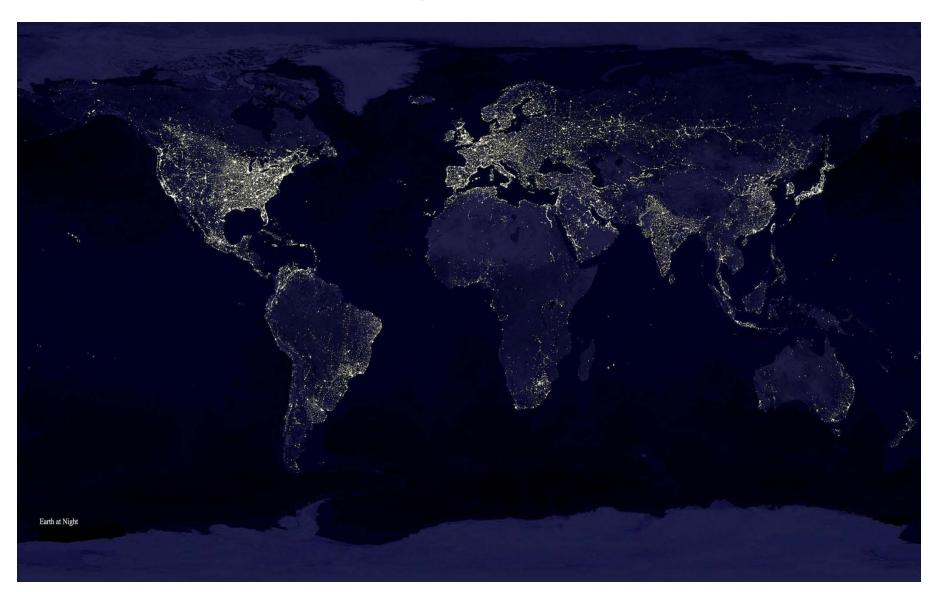
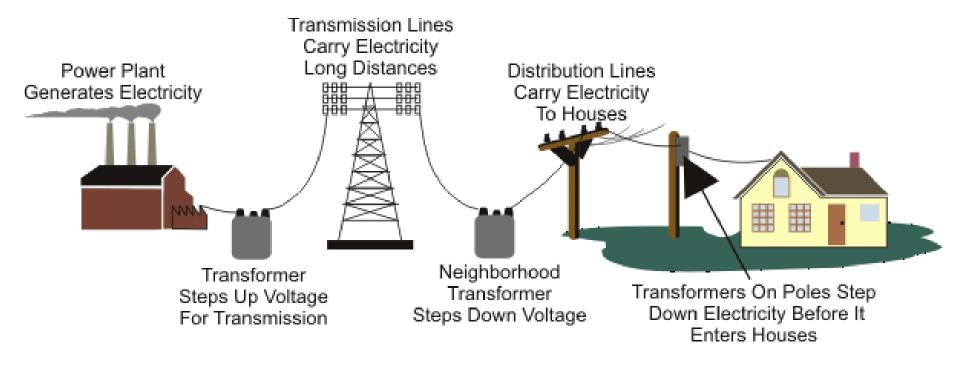
Electricity Market Deregulation and Energy Security: A Study of Malaysia, the UK, Singapore, ASEAN and China

Youngho Chang


07 March 2017

Energy Commission Putrajaya, Malaysia


Outline

- Introduction
- Electricity Market Deregulation
- Definitions of Energy Security
- Analytical Frameworks
 - Diversity
 - 4-A Framework
- Applications and Case Studies
 - Diversity: Malaysia and ASEAN
 - The U.K., Singapore, ASEAN and China
- Malaysia Electricity Market and Energy Security
 - Evaluations and Policy Implications
- Concluding Remarks

World at Night from Satellite

Electricity Generation, Transmission and Distribution: A Schematic Diagram

Structures of Electricity Market

- Under regulation
 - Vertically integrated, mostly government owned, natural monopoly
 - Instruments for regulation
 - Price and quantity
- Under deregulation
 - Separation of industry by ownership
 - Horizontally unbundled
 - Full competition in generation and wholesale/retail
 - Still monopoly in transmission and distribution (T&D)
- Motivations for unbundling

- Lower electricity price?

In a Deregulated Electricity Market

- Market becomes competitive
 - Non-existence (or little abuse) of market power
 - Easy entry and exit of players
 - Efficiency of allocation and lower and/or stable prices
- Market functions properly
 - Informed decisions
 - Allocation of risk
 - Transactions at minimal cost and lower production costs
- Market leads close to marginal-cost pricing
 - Prices would be close to the marginal cost under workable competition and a reasonably well-functioning market environment
- What do we expect?
 - Right and Stable Prices
 - Competition and Reliability

Models for the Electricity Sector

- Model 1
 - No competition, vertically integrated, publicly or privately owned
- Model 2
 - Model 1 but with competition in generation. A single buyer (a distribution company) may buy from a number of different producers
- Model 3
 - Model 2 but with common or contract carriage of high voltage transmission lines offered to all wholesale sellers and buyers
- Model 4
 - Model 3 but retail customers also choose their suppliers in full retail competition

Model 4 is the Most Economically Efficient

- If there are
 - A well-established electricity retailing system
 - Mature market institutions
 - Constant vigilance against market power
 - Appropriate methods of dispatch

What is Energy Security?

- Availability of energy in a broader sense
 - How much energy resources each country or the world has
 - Proven reserves
 - Reserve-production ratio (R/P)
 - R/P for world fossil fuels (at the end of 2015)

	Oil	Coal	NG
Proven Reserves	1,697.6 thousand million barrels	891,531 million tons	186.9 trillion cubic meters
R/P (years)	50.7	114	52.8

Source: BP Statistical Review of World Energy (2016)

Malaysia's Energy Endowment

	Oil	NG	Coal	Hydro	Renewables
Proven Reserves	3.6 thousand million barrels	1.2 trillion cubic meters	N/A	3.3 million tons oil equivalent (toe)	0.2 million toe
R/P (years)	14.2	17.1		N/A	N/A
Remarks (share of world total)	0.2%	0.6%		0.4%	0.1%

Note: Renewables: other than biofuels Source: BP Statistical Review of World Energy (2016)

Definition of Energy Security: Diversity or Diversification

- In fuel sources
 - Various fossil fuels and renewable energy sources
- In the sources of supply or supplier
 Piped natural gas vs LNG
- Concepts and Corresponding Indicators (e.g., Stirling, 2010)
 - Variety: The number of options
 - Balance: The share of the most dominant option
 - Disparity: Differences in various options

Diversity of the Malaysia's Energy Sector: Measures and Implications

- Variety
 - The number of energy resources utilized (1/N)
 - The lower, the better
- Balance
 - The share of the most utilized energy resource (%),
 - The lower, the better
- Disparity
 - The share of fossil fuels utilized (%)
 - The lower, the better

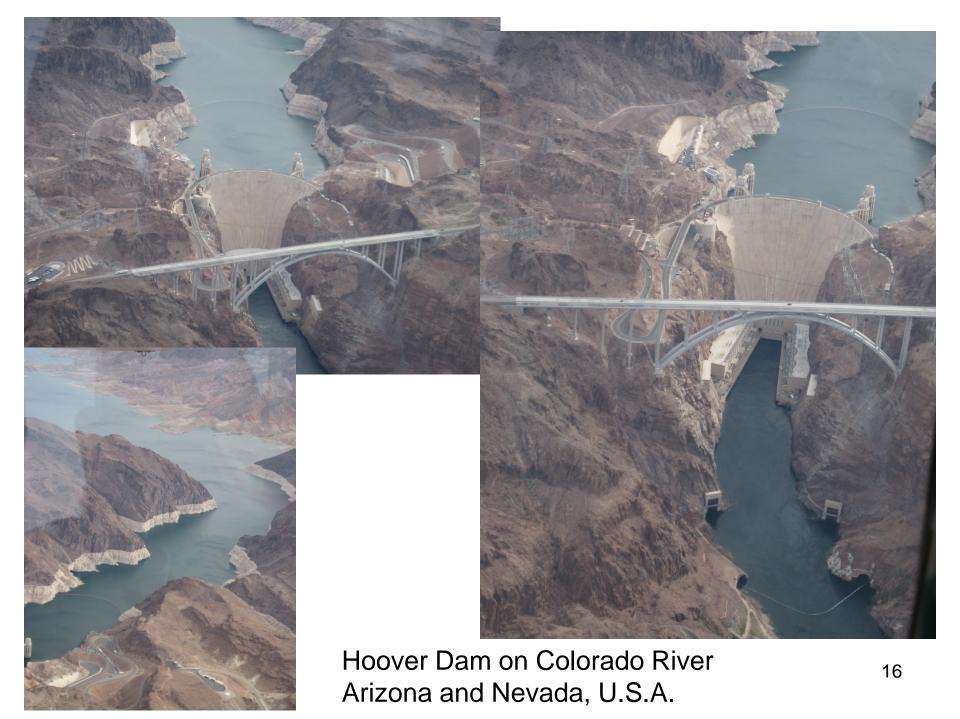
Diversity of the Malaysia's Energy Sector: Results and Evaluations

	Variety	Balance	Disparity
Measures	Number of energy resources utilized	Share of the most utilized fuel (natural gas)	Share of fossil fuels utilized
Values	0.13	51%	97.5%
Interpretations	Options are pretty diversified	The single option is slightly dominant	Options are highly similar, little different

Possible Policy Implications:

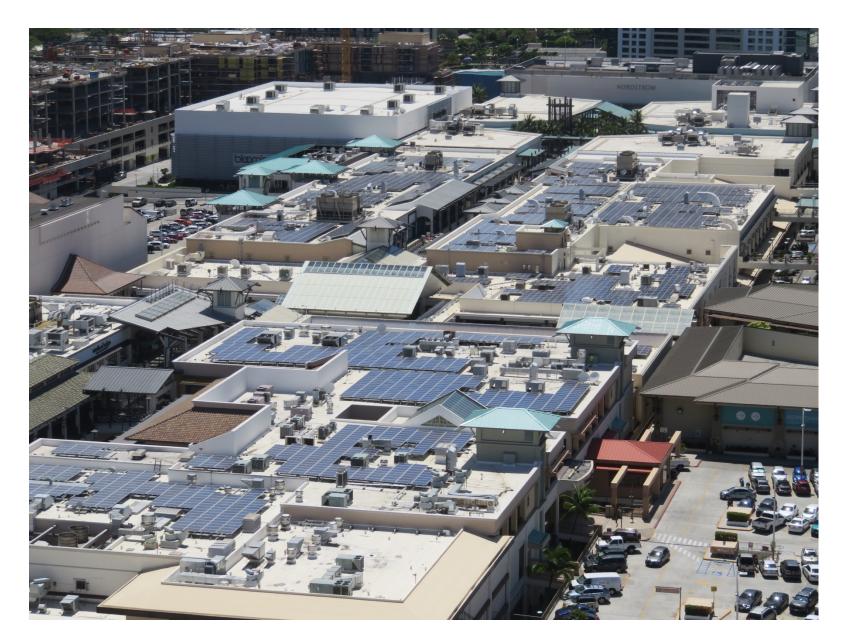
- 1. To reduce the dominance of a single fuel
- 2. To develop renewable energy resources and expand their usage

Energy Diversity of Malaysia and ASEAN


Country	Number of resources	Most utilised resource	Share of	Share of top five
	(inverse of the number of energy resources [1/n])	(share of the most utilised resource [%])	fossil fuels used (%)	most utilised resources (%)
Brunei	0.5 (2)	Natural gas (73)	100.0	100.0
Cambodia	1.0 (1)	Oil (100)	100.0	100.0
Indonesia	0.11 (9)	Oil (47)	97.7	99.6
Laos	0.33 (3)	Oil (100)	100.0	100.0
Malaysia	0.13 (8)	Natural gas (51)	97.5	100.0
Myanmar	0.5 (2)	Natural gas (56)	100.0	100.0
Philippines	0.13 (8)	Oil (58)	92.5	100.0
Singapore	0.33 (3)	Oil (88)	100.0	100.0
Thailand	0.13 (8)	Oil (52)	96.6	98.1
Vietnam	0.17 (6)	Oil (37)	100.0	100.0

Abbreviations ASEAN = Association of Southeast Asian Nations; n = number of resources Changes of values after 2009 are very small or nil

Source: Chang and Yao (2012)


Jeju Island, Korea

Rooftop Solar Panel Kunming, Yunnan China

Ala Moana Shopping Center, Honolulu, Hawaii

The Economic Definition of Energy Security

- Definition
 - The adequate and reliable supply of energy resources at a reasonable price (e.g., Bielecki, 2002, Energy Commission Annual Report 2013)
- Adequacy
 - Endowment of (energy) resources
- Reliability
 - Delivery of (energy) resources
- Reasonable price
 - Balance between efficiency and fairness

Deregulation of Electricity Market and Energy Security

- Deregulation of Electricity Market
 - Brings competition into the electricity market
 - Real-time pricing or Time-of-Use (TOU) charges
- Application to the Electricity Sector
 - Adequacy
 - Sufficient amount of installed capacity and generation
 - Reliability
 - Dependable Transmission and Distribution (T&D) network
 - Reasonable Price
 - Stable price
 - Right price price = marginal cost of generation

Applications: The U.K. and Singapore

- The economic definition of energy security is adopted
- A 3x3 matrix of questions are established

	Adequacy	Reliability	Reasonable Price
Present (Normal)			
Present (Emergency)			
Future			

• Corresponding indicators that can answer the questions best are selected

Energy Security Framework: Questions and Indicators

	Adequacy	Reliability	Reasonable price
Present (normal)	Is there enough generation capacity to meet current demand?	Is the grid reliable now?	Is price reasonable now?
	Measure: Reserve margin	Measure: SAIDI and SAIFI	Measure: Lerner Index
Present (emergency)	Is there enough generation surplus to deal with emergency shutdown of a plant?	Is the system robust enough to handle an emergency?	Are there effective guards against high prices in an emergency?
	Measure: Supply marginal assessment	Measure: Feature checklist	Measure: Residual supply index
Future	Is there sufficient investment to ensure enough capacity in the future?	Is there sufficient investment to ensure continued grid reliability in the future?	Are there efforts to ensure reasonable prices continue in the future?
	Measure: % Growth investment	Measure: % Growth investment	Measure: Policy checklist

Summary of Selected Indicators

	Adequacy	Reliability	Reasonable Price
Present	Reserve	SAIDI	Lerner Index
(Normal)	Margin	SAIFI	
Present (Emergency)	Supply Margin Assessment (SMA)	Feature Checklist	Residual Supply Index (RSI)
Future	Growth in	Growth in	Policy
	Investment	Investment	Checklist

Summary of Benchmark Levels

	Adequacy	Reliability	Reasonable price
Present (normal)	>20%	SAIDI: 0.89 – 1.16 hour	<10%
		SAIFI: 0.90 - 0.92 incidents	
Present (emergency)	Non-pivotal	Feature present?	Non-pivotal
Future	Investment levels result	Investment growth >	Policy present?
	in healthy reserve margin	demand growth	
	(>20%)		

Summary of Evaluations

Singapore

	Adequacy	Reliability	Reasonable price
Present (normal)	Р	Р	Р
Present (emergency)	Р	Р	Р
Future	Р	?	Р
The U.K.		- 1 1 1	
	Adequacy	Reliability	Reasonable Price
Present (normal)	Р	Р	Р
Present (emergency)	Р	Р	Р
Future	Р	?†	Р

*P = Pass; F = Fail; ? = Inconclusive.

In sum, deregulation of electricity market appears to help ensure energy security in the U.K. and Singapore

Four Perspectives on Energy Security

- Scientific aspect
 - Availability of (energy) resources
- Engineering or technological aspect
 - Applicability of (energy) technologies
- Environmental aspect
 - Acceptability of (energy) resources or technologies by society
- Economic aspect
 - Affordability of (energy) resources

Energy Security: Definition and Concepts

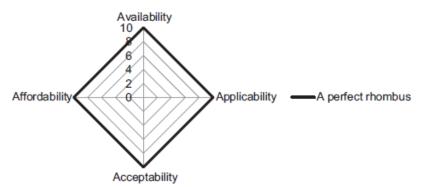
- Adequate and reliable supply of energy resources at a reasonable price
- Availability
 - Fossil fuels and nuclear energy: Proven reserves
 - Renewable energy resources: Potential
- Applicability
 - Technologies to harness useful energy from the proven reserves and the potential
- Acceptability
 - How a society or an economy is willing to use an energy resource
- Affordability
 - How affordable the cost of using an energy resource (i.e., useful energy) is

Workings of the 4-A Framework

- No proven reserve or renewable potential, no delivery of energy resources
- Lack of applicable technologies makes the available reserves or the renewable potential untapped

- Solar energy

- If a society or an economy shuns using the available reserves or the renewable potential, then the applicable technologies will not be utilized and the installed capacity will be stranded
 - Coal
 - Nuclear energy
- If the cost of delivering energy to the end-user is not affordable, then no delivery of energy resource is made


The 4-A Framework of Energy Security: Possible Indicators

	Availability	Applicability	Affordability	Acceptability
IAEA	 Share of households without electricity Reserves to production ratio Diversification of Primary Energy Demand Dependence on imports (mtoe) 	electricity • R&D	 Share of household income spent on fuel and electricity Energy use per capita 	
APERC	 Reserves to production ratio (R/P ratio) 		• Energy use per capita	 GHG emissions per capita GHG emissions per unit GDP
IEEJ and ASEAN Center for Energy		 Energy use per unit GDP Industrial, household, agricultural, commercial and transport energy intensity 	 Energy use per capita 	

Source: Tongsopit, Kittner, Chang, Aksornkij and Wangjinariran (2016)

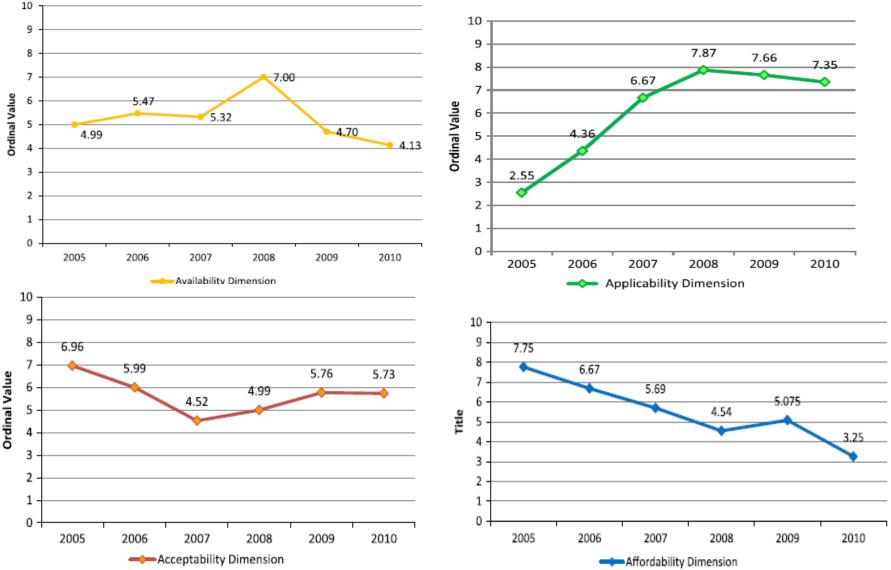
Energy Security in ASEAN (Tongsopit et al, 2016)

- The 4-A framework is applied to all ASEAN countries to examine the status of energy security
- Time span: 2005 to 2010
- Values of individual indicators are normalized
- The inside area of the rhombus indicates the overall status of energy security

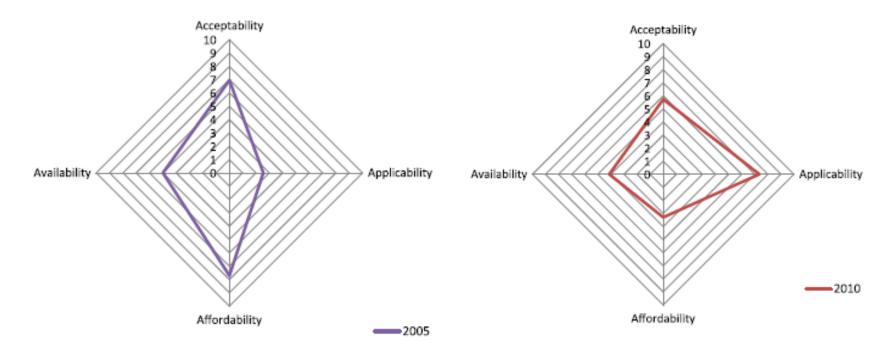
• A collective analysis, not an individual country analysis

Energy Security in ASEAN: Selected Indicators

Availability (AV)	Applicability (AP)
AV1: R/P Ratio of Oil	AP1: ASEAN Energy Intensity
AV2: R/P Ratio of NG	AP2: Industrial Energy Intensity
AV3: R/P Ratio of Coal	AP3: Services Energy Intensity
AV4: Renewables Consumption	AP4: RE generation status excluding large
(TWh)	hydro (MW production capacity)
Affordability (AF)	Acceptability (AC)
AF1: Share of population without	
AF1: Share of population without electricity	AC1: CO ₂ emission per capita
AF1: Share of population without electricity AF2: Energy per capita	AC1: CO ₂ emission per capita AC2: Total estimated SO ₂ emissions


Source: Tongsopit et al (2016)

Energy Security in ASEAN: Data Normalization


- For each A, the maximum and the minimum values are identified
- The value of each indicator is normalized by the following formula

Normalized value
=
$$1 + \frac{Actuial Value - Minimum}{Maximum - Minimum} * (10-1)$$

Energy Security in ASEAN: Results

Interpretations and Comparisons: 2005 vs 2010

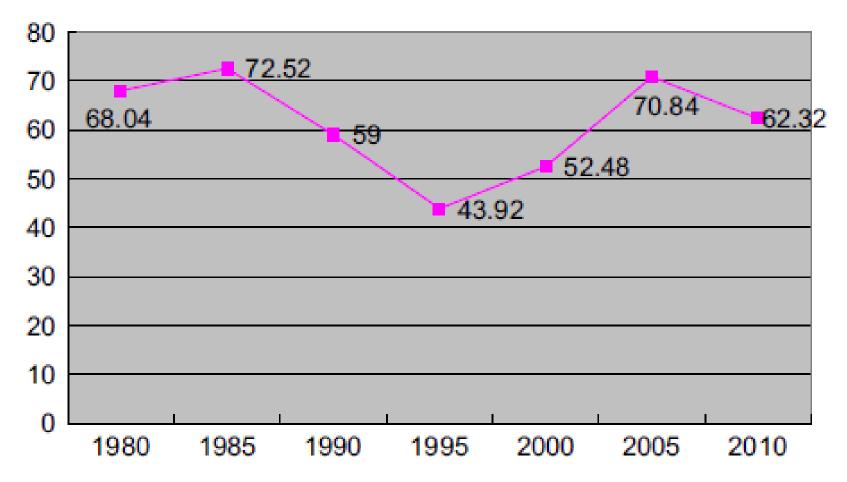
For the 4-A perspectives, only Applicability appears to have improved. The area of rhombus in 2010 appears to slightly shrink compared to 2005 (from 55.27 to 51.79), which indicates less secured.

Energy Security in ASEAN: Evaluations and Policy Implications

- For Availability
 - To diversify fuel sources
 - To develop bases of renewable energy
- For Applicability
 - The level of energy intensity has been declining
 - To keep improving overall energy efficiency
- For Acceptability
 - To keep reducing per capita carbon emissions
- For Affordability
 - To decrease the population without access to electricity
 - To reduce the volatility of gasoline price

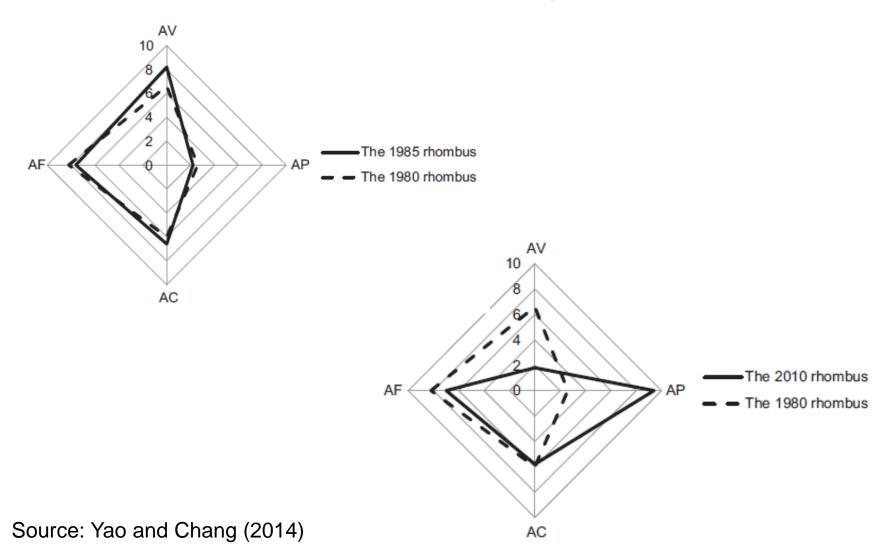
Energy Security in China (Yao and Chang, 2014)

 The 4-A framework is applied to examine energy security of China from 1980 to 2010 (from the Sixth Five-Year Plan to the Eleventh FYP)


- 1980 is used as the base year

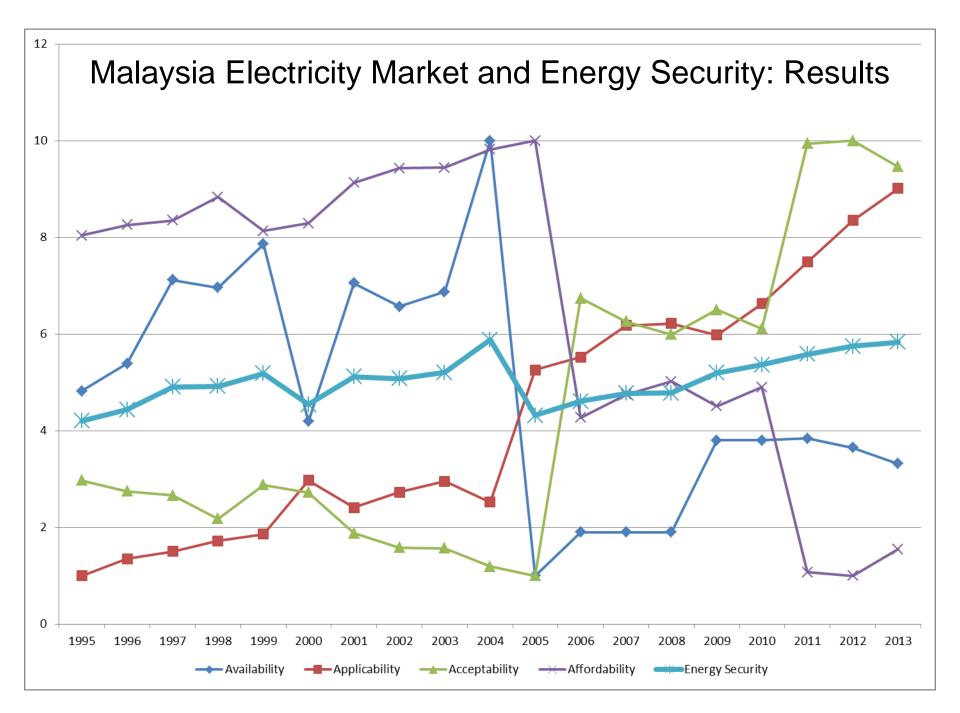
- Each A has five indicators
- Values of all indicators are normalized
- The trend of each A is analyzed
- The area of the rhombus indicates the overall level of energy security (refer to the ASEAN case)

Energy Security in China: Selected Indicators


Availability	Applicability	Acceptability	Affordability
Coal R/P ratio	Energy intensity (primary energy/GDP)	Share of China's CO_2 emissions	Growth rate of price of coal
Oil import dependence ratio	Gross generation efficiency of fossil fuel-fired power plants	China's SO ₂ emissions	Growth rate of price of petroleum
NG R/P ratio	Crude oil distillation capacity	China's soot emissions	Growth rate of price of electricity
Availability factor of conventional thermal electricity	Power plants owned by LME	Share of renewable energy generation	Volatility of coal price
Availability factor of non-thermal electricity	Energy industry technical updating	Share of nuclear energy generation	Energy consumption per capita

Energy Security in China: Results: Area of Rhombus

Source: Yao and Chang (2014)


Energy Security in China: Evaluations and Comparisons

Malaysia Electricity Market and Energy Security

- The 4-A Framework is applied to the electricity sector in Malaysia (4x1 matrix)
- Selected Indicators for each A

	Concepts	Indicators
Availability (AV)	Endowment	Total installed capacity of electricity generation (MW)
Applicability (AP)	Efficiency	A ratio of electricity generation to the installed capacity (%)
Acceptability (AC)	Preference	Carbon emissions per capita (tons)
Affordability (AF)	Capability	Electricity consumption per capita (toe)

Malaysia Electricity Market and Energy Security: Interpretations and Policy Implications

- The overall energy security of the Malaysia's electricity sector exhibits an increasing trend after a little drop in 2004
- The Availability
 - The installed capacity dropped in 2000 and 2005
 - To increase the installed capacity, especially renewable sources
- The Applicability
 - The efficiency of electricity generation appears to have improved
 - To increase the load factor
 - To develop renewable energy technologies

Malaysia Electricity Market and Energy Security: Interpretations and Policy Implications

- The Acceptability
 - The CO_2 emissions dropped in 2005 and 2010
 - To develop no or little carbon emitting generation technologies
- The Affordability
 - The electricity consumption per capita shows a declining trend over time
 - To decrease the number of people without access to electricity
 - To decrease the amount of electricity wasted during T&D
 - To introduce real-time pricing or TOU charging

References

- Bielecki (2002): "Energy security: Is a wolf at the door?" *Quarterly Review of Economics and Finance*, 42: 232-250 (2002)
- BP Statistical Review of World Energy (2016)
- Chang and Lee (2008): "Electricity market deregulation and energy security: A study of the UK and Singapore electricity markets," *International Journal Global Energy Issues*, 29: 109-132 (2008)
- Chang and Yao (2012): "Energy security and climate change
- in ASEAN: Implications and policies," in *Energy and Non-Traditional* Security (NTS) in Asia, edited by Mely Caballero-Anthony, Youngho Chang and Nur Azha Putra, Springer (2012), pp. 31 – 46.
- Yao and Chang (2014): "Energy security in China: A quantitative analysis and policy implications," *Energy Policy*, 67: 595-604 (2014)
- Stirling (2010): "Multicriteria diversity analysis A novel heuristic framework for appraising energy portfolios," *Energy Policy*, 38: 1622-1634 (2010)

Thank you for your attention!

If you have any comment, suggestion or question, please contact me at

isyhchang@ntu.edu.sg ychang306@gmail.com