

EPC PROJECTS IMPLEMENTATION – CNS GROUP'S EXPERIENCES AND ENERGY SAVING SOLUTIONS

Scope of Services by ESCO in EPC Projects

- Project Funding & Financing Options
- Engineering & Economic Feasibility Studies
- Project Design, Engineering & Permitting
- Project Construction
- Project Commissioning
- □ Operation, spare parts & Maintenance
- □ Performance measurements & monitoring
- Energy performance reporting

Key Features & Success Factors in EPC

Energy Cost savings based on ACTUAL & MEASURED data-before & after

CAPABLE

Commitment to get FASTER results!

TRUST & TRANPARENCY in strategic partnership to reduce business costs UNDERSTANDING of the how EPC works & it long term benefits by facilities owners

Selection Criteria of ESCOs for EPC Project Implementation

Example of Our M&V Data of Actual Energy Consumption Reduction Achieved for EPC Projects with CERMS

WHERE AND HOW TO SAVE ENERGY COST?

Energy Saving potentials at Buildings

Examples of MINIMUM GUARANTEED SAVINGS POTENTIALS identified from a detailed energy audit for air conditioning systems at a hospital building

ITEM	MOTOR (kW)	Actual (kW)	Normal kWh/Year	Saving Mode kWh/Year	Saving %	Saving	
						kWh/ year	RM
CHWP 1 Old Block Chiller Room	18.5	19.1	165,024	107,266	35.0%	49,505	25,199
CHWP 2 New Block Chiller Room	18.5	19.0	164,160	106,704	35.0%	49248	25,067
CDWP 1 Old Block Chiller Room	15	13.3	114,912	82,737	28.0%	32,175	16,377
CDWP 1 New Block Chiller Room	18.5	15.3	132,192	95,178	28.0%	37,014	18,840
Total Pumps Saving		67	576,288	391,885	32.0%	184,403	85,484

ITEM	MOTOR (kW)	Actual (kW)	Normal kWh/Year	Saving Mode kWh/Year	Saving %	Saving		
						kWh	RM	
Chiller - Old Block CERMS	210	128	1,105,920	995,328	10.0%	405,873	206,589	K
Chiller - New Block Chiller Room	210	115	993,600	914,112	8.0%	337,824	171,952	1
Total Chillers Saving	420	243	2,099,520	1,909,440	9.1%	733,697	378,541	
TOTAL ACMV SAVING					I .		464,025	
				•				

Examples of MINIMUM GUARANTEED SAVINGS POTENTIALS identified from a detailed energy audit for lighting systems at an office building

	Present	Vesta		Saving		Saving Amount	
Current Lighting	Usage (W)	Usage (W)	Saving (W)	(KW)	Saving %	(RM) per yr	
Fl. Light T8 1x36W	230,010	123,420	106,590	38,143	46.3	11,900	
Fl. Light T8 2x36W	1,815,480	974,160	841,320	222,108	46.3	69,298	
Fl. Light T8 2x18W	153,272	59,976	93,296	27,469	60.9	8,570	
PLC 1x18W	6,624	2,880	3,744	112	56.5	35	
PLC 2x18W	180,320	78,400	101,920	34,395	56.5	10,731	
Spotlight 1x150W	1,980	900	1,080	389	54.5	121	
Spotlight 1x250W	135,300	76,260	59,040	21,254	43.6	6,631	
Total	2,522,986	1,315,996	1,206,990	343,870		107,287	
Total Lighting Saving per year							

FREQUENTLY ASKED QUESTIONS FROM PROSPECTS IN ENERGY PERFORMANCE CONTRACTING-SHARED SAVING PROJECTS IMPLEMENTATION IN MALAYSIA

How the actual savings is measured?

- The based on actual measured data collected using agreed measurement methods (mostly with permanent energy meters) to be compared with the agreed baselines - Energy saving reports will be submitted on monthly basis.
- Will follow the international guidelines, International Performance Measurement and Verification Protocol (IPMVP).
- The owner is entitled to engage independent parties to measure and verify energy saving results using the same method.

Assurance about the performance of the equipment/systems such as lighting especially with the fast changing in efficiency in the technologies?

- The ESCO will ensure the best and the most economical technologies throughout the contract period to maximize savings that will benefit both parties.
- The facilities will be able to change to other technologies after the contract ended (fittings for lighting systems are generic and easily fitted with other types of lamps)

What if the energy saving achieved is less than promised by the ESCO and vice versa?

- If the saving achieved is less, the owner will only need to pay the ESCO actual saving achieved-ESCO will take the full risks to get less returns in its investment until the contract ended;or
- The owner can terminate the contract with sufficient notice for the ESCO to remove all equipment installed at their own costs and bring back the operation to its initial conditions; or
- To renegotiate the contract period and conditions.

What if there are significant changes of operations in the facilities?

 New energy data will be collected and energy baselines to be reviewed to accommodate changes based on discussion and agreement between the ESCO and the owner.

How about energy savings achieved by own initiatives by the owner throughout the contract period?

- The ESCO's and the owner's personnel will closely communicating to update on all energy related activities that may affect the actual saving achieved from the ESCO's projects.
- Suitable methods to isolate results from each initiative will be proposed and discussed and later agreed.

Who will bear the costs for maintenance and spare parts of equipment installed by the ESCO in the project?

 All costs for maintenance and spare parts for all systems and equipment installed to achieve energy savings proposed by the ESCO will be borne by the ESCO.

Why don't the ESCO install everything and run for 3 months and later the owner will sign the EPC contract?

- The ESCO need to have the signed agreement to secure funding from investors for the project; and
- There will be provisions in the contract that will allow the owner to instruct the ESCO to dismantle everything with sufficient notice or whenever the ESCO fail to fulfill its contractual obligations.

What will happen after the contract period?

- All system and equipment installed will be handed over and owned by the owner.
- The owner will enjoy the 100% saving from the energy saving measures implemented.
- The owner may engage the ESCO to for specified support services at agreed and minimal service rates for maintenance and reporting.

What if the project fail and how to deal with the consequences of that situation

- If the ESCO fail to deliver or the project caused serious problems to the facilities which could not be resolved, the ESCO will remove all equipment from the facilities at its own cost and bring the operation back to normal; or
- Delayed to resolve technical problems or other issues acknowledged by both parties, the ESCO will request to renegotiate the contract where longer period of contract may be needed to complete the project

All responsibilities by the ESCO will be clearly stipulated in the contract terms and conditions to mitigate all possible consequences where the ESCO will be accountable to fix it or bring it back to the normal conditions at its own cost

