

NATIONAL **CONFERENCE ON** 2015

Water Heater Safety

9th November 2015

Ir. H.P. Looi, B.Eng (Hons), P.Eng, F.IEM, Jurutera Gas mektricon@gmail.com

PRESENTATION OUTLINE

THIS PRESENTATION aims to provide an understanding of the safety (electrical) issues in the design and installation of domestic electric water heater with the following topical discussions:

- (1) The water heater market
- (2) Types of domestic water heater
- (3) IEC 60364 wiring configurations and part 701 (locations contain bath or showers)
- (4) Installation Standards IEC 60364-7-701
- (5) Design challenges water heater installations.

The Water Heater Market

CTRONICS

Swww.teeam.org.my | D teeam52@gmail.com

Water Heater Failure (Thailand)

A Swedish couple have died after apparently being electrocuted while taking a shower together in a hotel room in Thailand.

Friend received electric shock when trying to revive victims.

Examples of WH Failure (Singapore)

18-year-old dies after getting electrocuted during shower at Hougang flat, Singapore. 1st September 2014

- ✓ Instant water heater newly bought to replaced the old WH which was not working.
- New water heater was connected to the plug point (outside the bath room. Note No RCD.

- ✓ Yell from bathroom, grandfather rushed to locked bathroom. Smoke coming out from socket outlet.
- ✓ By the time the socket outlet was switched off, victim was unconscious.
 Victim died in

mektricon@gmail.com

🔊 www.teeam.org.my | 🐠 teeam52@gmail.com

Examples of WH Failure (Singapore)

18-year-old dies after getting electrocuted during shower at Hougang flat, Singapore. 1st September 2014

🗶 www.teeam.org.my | 🐠 teeam52@gmail.com

Examples of WH Failure (Malaysia)

September 2013 – Japanese man electrocuted while holding shower head of water heater. Wife electrocuted trying to save husband.

August 2014 – Pharmacist (lady) found electrocuted while still clutching shower head of water heater.

Since 2009; seven reported cases of death by electrocution (source WG on heated appliances, safety for electrical household appliances, SIRIM):

- ✓ Four cases involved water heaters
- ✓ Three cases involved storage water heaters
- ✓ Most cases RCCB (main) not working
- \checkmark In one case earth and live cables melted (found to be undersized).
- ✓ In ALL cases, victim died while still holding onto metallic shower head.

2012 Electrical Appliances in Malaysia

	Appliances	Urban	Rural	Total
1.	Car	83.6%	62.7%	77.8%
2.	Motorcycle	61.5%	77.6%	66.0%
3.	Bicycle	28.6%	30.4%	29.1%
4.	Air Conditioner	46.8%	13.8%	37.6%
5.	Washing machine	93.5%	82.9%	90.5%
6.	Refrigerator	97.5%	93.0%	96.2%
7.	Gas Stove	95.5%	95.6%	95.5%
8.	Kerosene Stove	1.4%	4.0%	2.1%
9.	Wood/Charcoal Stove	1.6%	11.9%	4.5%
10.	Microwave oven	32.7%	14.7%	27.7%
11.	Personal computer	25.0%	10.8%	21.0%
12.	Television	98.2%	96.1%	97.7%

Table 2 – Penetration Rate of Appliances in Malaysian Households 2012 (Census data from Department of Statistics)

No statistics for water heater BUT can correlate water heater penetration to air conditioning units. Water heater may have penetration of at least 45% in urban area. Total house holds approx. 6.5million, >70% in areas classified as Urban.

Types of Water Heater

mektricon@gmail.com

🗶 www.teeam.org.my | 🐠 teeam52@gmail.com

November 2015

2

Types of Domestic Water Heater

Gas water heater

Electric water heater

mektricon@gmail.com

Types of Domestic Water Heater

Passive solar collector

Active solar collector

C www.teeam.org.my | I teeam52@gmail.com

Types of Domestic Water Heater

Sizing Domestic Water Heater

Typical Hot Water Usage

Typical Hot Water Use				
Showers (normal)	10 L/min			
Showers (water efficient, 5 \checkmark)	5 L/min			
Standard bath (1/2 full)	75 – 100 L/min			
Dish washer	35 – 50 L/min			
Laundry – hot wash/warm rinse	115 L/min			
Laundry – hot wash/cold rinse	75 L/min			
Laundry – warm wash/cold rinse	35 – 45 L/min			

November 2015

Sizing Domestic Water Heater

Typical Hot Water Usage for showers; 5 - 10 L/min Instant water heater flow rate from 1 - 2 gpm Power outlets can therefore start from 15A to 30A, 240V

		2.2 kW	10.0 A	220 Va.c.	50 / 60 Hz
		3.0 kW	13.0 A	230 Va.c.	50 / 60 Hz
		3.3 kW	15.0 A	220 Va.c.	50 / 60 Hz
		3.3 kW	13.8 A	240 Va.c.	50 / 60 Hz
V. services	Electrical Loading	3.6 kW	16.0 A	230 Va.c.	50 / 60 Hz
hh.		3.6 kW	15.0 A	240 Va.c.	50 / 60 Hz
EE		4.4 kW	20.0 A	220 Va.c.	50 / 60 Hz
		4.8 kW	21.0 A	230 Va.c.	50 / 60 Hz
		5.2 kW	24.0 A	220 Va.c.	50 / 60 Hz
	Min. Water Pressure		10 kPa / 1	45 psi / 0.1 l	bar
2.33	Max. Water Pressure		380 kPa /	55 psi / 3.8 k	bar
	Min. Water Flow		2 litre	s per minute	
	Max. Water Flow		8 litre	s per minute	
	Inlet / Outlet Connection	ø15mm	n (1/2″ BSF	P) – Single Poi	int System
	Dimensions		240 X	360 X 70 mm	
	Weight	_	. ,.	kg (i90e) & 2 (i90e (RS)) 8	7 kg (i90) & 4.0 kg (i90 (RS)
	n waarapatan ciwa				

Swww.teeam.org.my | I teeam52@gmail.com

Sizing Domestic Water Heater

Storage tank; 15 Litres to 100 Litres.

Electric power from 1kW to 3kW

Model	Tank Capacity	Time Ta	nken (Min) ¹	Replacement Rate 43°C
model	Litres (Imp. Gals)	ЗkW	1.5kW	Rise
JH15	15 (3.3)	15	23	
JH25	25 (5.5)	20	40	
JH35	35 (7.7)	30	60	3kW Heating Element 63 Litres (14 Gals) per
JH38	38 (8.4)	35	70	hour
JH50	50 (11.0)	45	90	1.5kW Heating Element 32 Litres (14 Gals) per
JH56	56 (12.3)	50	100	hour
JH68	68 (15.0)	60	120	
JH91	91 (20.0)	80	160	

Approximate time taken to heat up to 70°C, inlet water temperature at 27°C

mektricon@gmail.com

🔊 www.teeam.org.my | 🐠 teeam52@gmail.com

November 2015

Safe, **Reliable Design**

Safety Features Hitachi is Particular About

Incolov Heater (Incoloy is a stainless steel and nickel alloy) This rust-free heater prevents the formation of sediment and withstands high temperatures.

Copper Heater Tank

The tank is made of copper and is highly resistant to heat and pressure.

DC Inverter Pump model internal construction

12 Advanced Safety Features

Detailed Consideration by Hitachi

All potential risk sites are thoroughly insulated and, of course, there's an earth leakage circuit breaker (ELCB) to further assure safe use.

ELCB 0.0

(Earth Leakage Circuit Breaker) This breaker cuts off the power within 0.1 second when it detects an electrical leakage of 15mA or higher.

On-Off Switch This is the master switch to control the operation of the system.

Insulation at Potential Risk Points

Rust-resistant Incolov heater Features a function to prevent water becoming too hot and causing scolding. For extra safety, UL 94-V0 flame-resistant material is also used.

Incolov Heater

Copper Heater Tank

The tank is made of copper and is

highly resistant to heat and pressure.

This rust-free heater prevents the formation of sediment and withstands high temperatures.

Thermostat with a Reset System The system makes sure that the water temperature never goes any higher than 75°C.

PCB Cover It protects the PCB unit from any damage from an outside source.

Non Flammable Cabinet The cover is made of a special material and is certified with the UL 94-V0 standard.

IP25 water- and dust-resistant finish. Also features a water pressure regulation valve to prevent excessive water pressure on the heater.

Waterproof Structure P25 Grade

does not exceed 980.665 kPa.

Water Filter Prevents dirt entering at the valve.

Water Pressure Sensor

This enables the machine to continue

working normally even when the water

pressure drops to as low as 4,9033 kPa. (Standard model: 15.6906 kPa)

Instant Water Heater (tankless)

November 2015

Water Heater (typical internal wirings)

2 heating element 2 heating element 1 heating element JUNCTION **GROUND TERMINAL** 0 BOX TO POWER SUPPLY TO POWER SUPPLY ť BLACH AC GND. RED RED B BLĄ ᆸ Ē HI-TEMP JUNCTION JUNCTION UPPER LIMIT (1 BOX BOX HI-TEMP SWITCH O POWEF SUPPLY OPTIONAL SWITCH LIMIT SWITCH GND. UPPER 20 VOLT ONLY) THERMOSTAT UPPER RED YELLOW Ē THERMOSTAT BLUE 2 BLACK RED B HI-TEMP LIMIT 1SWITCH UPPER UPPER o HEATING HEATING ELEMENT BLACK ELEMENT THERMOSTAT LOWER RED BLACK **HI-TEMP** LIMIT SWITCH HEATING LOWER THERMOSTAT ELEMENT RED THERMOSTAT BLACK † ACK LOWER Every heating element is HEATING LOWER HEATING ELEMENT with protected thermal а ELEMENT overload. ✓ Thermostat control switches element ON/OFF.

Technical Standards

CTRONICS

🔊 www.teeam.org.my | 🐠 teeam52@gmail.com

November 2015

Energy Commission Controlled Goods

34 categories of controlled goods for electrical & electronic equipment

Rationale for Regulation: Ensure safety and Consumer protection

Legislative Framework Electricity Supply Act 1990;-Section 4 (I), Part III-Section 37 (1), Part IX

Electricity Regulations 1994;-

Regulation 97 (1)

- NRG = Not Regulated
- IDT = Identical
- MOD = Modified
- NEQ = Not Equivalent

Energy Commission Controlled Goods

34 categories of controlled goods for electrical & electronic equipment

- 1. Plug top/Plug (15A and below)
- 3. SOCKET OUTLET (15A and below)
- **10. CIRCUIT BREAKER including AC CURRENT OPERATED EARTH LEAKAGE CIRCUIT BREAKER and MINIATURE CIRCUIT BREAKER**
- **17. IMMERSION WATER HEATER**
- 18. WATER HEATER including HEATING ELEMENTS IF SUPPLIED SEPARATELY

List of Technical Standards

Suruhanjaya Tenaga – Certificate of Approval to Manufacture, Import, Display, Sell or Advertise for Electrical Equipment.

	MS	IEC
Instantaneous Water Heater	MS IEC 60335-1:2003 MS 1597-2-35:2003	IEC 60335-1:2001 IEC 60335-2-35:2002
Electric Storage Water Heater	MS IEC 60335-1:2003 MS 1597-2-21:2000	IEC 60335-1:2001 IEC 60335-2-21:1997
Electric Fixed Immersion Heater	MS IEC 60335-2- 73:2003	IEC 60335-2-73:2002
Portable Immersion Heater	MS IEC 60335-2- 74:1995	IEC 60335-2-74:1994

List of Technical Standards

Suruhanjaya Tenaga – Circuit Breaker & RCCB

Item	Category Detail of Equipment St		Stand	ndards	
			Domestic	Relevant International	
10	CIRCUIT	Residual Current Circuit	MS IEC 61008-1: 2007	IEC 61008-1: 2002	
	BREAKER	Breaker (RCCB)	MS IEC 61008-2-1: 2003	IEC 61008-2-1: 1990	
	including AC CURRENT		MS IEC 61008-2-2: 2003	IEC 61008-2-2: 1990	
	OPERATED EARTH	Residual Current Breaker	MS IEC 61009-1: 2005	IEC 61009-1: 2003	
	LEAKAGE	with Overcurrent Protection	MS IEC 61009-2-1: 2003	IEC 61009-2-1: 1991	
	CIRCUIT BREAKER and	(RCBO)	MS IEC 61009-2-2: 2003	IEC 61009-2-2: 1991	
	MINIATURE CIRCUIT	Miniature Circuit Breaker (MCB)for ac	MS IEC 60898-1: 2007	IEC 60898-1: 2003	
	BREAKER	Miniature Circuit Breaker (MCB)for ac & dc	MS IEC 60898-2: 2007	IEC 60898-2: 2003	
		Fuse Base & Carrier up to	MS IEC 60269-1:2011	IEC 60269-1:2006	
		32A	MS IEC 60296-2:2011	IEC 60269-2:2006	
		Fuse/Fuse Link up to 63A	MS IEC 60269-2:2011	IEC 60269-2:2006	
			MS IEC 60269-3:2011	IEC 60269-3:2010	
		Switch fuse up to 63A.	MS IEC 60947-1:2010	IEC 60947-1:2007	
			MS IEC 60947-3:2010	IEC 60947-3:2008	

Table 1.: Electrical Standard for Installation Equipment				
Consumer Unit	IEC 61439–3			
Final distribution board	IEC 61439–3			
*Miniature Circuit Breaker (MCB)	MS IEC 60898–1 & –2			
Circuit breaker	MS IEC 60947–2			
*Residual current device (RCD)	MS IEC 61008–1 & –2, MS IEC 62423			
Wire and cable for fixed wiring				
450/750V PVC insulated cable	MS 2112–3/–4			
600/1000 V PVC insulated cable	MS 2100/1/2/3			
Cable trunking and ducting	MS 1777			
Conduit	MS IEC 61386			
Double pole switch (Up to 63A)	**MS IEC 60669 (Non – Electronic)			
***13A plug and switched socket outlet	MS 589			
***15A plug and socket outlet	MS 1577			
Switches, Disconnectors	MS IEC 60947-3			
Flexible wire and cable	MS 2112–5			
*= MCB – RCD combinations such as RCBO are acc	ceptable as replacement			

** = Electronic switches are not permitted by MS IEC 60364

*** = Shall not be used for new installation and recommend to replace for existing installations

Technical Standards – 60335-1

LC,	IEC 60335-1
INTERNATIONAL STANDARD	Edition 5.0 2010-0
NORME INTERNATIONALE	
	fety –
Part 1: General requirements Appareils électrodomestiques et analogues – Sé Partie 1: Exigences générales	surité –
Appareils électrodomestiques et analogues – Sé Partie 1: Exigences générales	surité –
Appareils électrodomestiques et analogues – Sé Partie 1: Exigences générales INTERNATIONAL ELECTROTEOHNICAL COMMISSION	surité –
Appareils électrodomestiques et analogues – Sé Partie 1: Exigences générales	Surité – Proce Code Code Prex XL

25

IEC 60335 – 1 (Edition 5: 2010) – Household and similar electrical appliances – Safety – Part 1: General Requirements.

- ✓ Covers domestic appliances
- Prescribe electrical, mechanical, and thermal hazards, as well as fire and radiation hazards
- Takes into account hazards that may arise even if the appliance is used properly and in accordance with the operating instructions.
- This standard is a product-family standard that covers the safety of appliances and takes priority over any generic standards that may apply to the same item.

60335 – 1 ; Clause 30 Heat and Fire Rating

Parts of Non-Metallic Materials in Household Equipment, IEC 60335-1, Chapter 30.2 Test of Heat and Fire Resistance

🔊 www.teeam.org.my | 🐠 teeam52@gmail.com

mektricon@gmail.com

🗶 www.teeam.org.my | 🐠 teeam52@gmail.com

60335 – 1 ; Heat and Fire Rating

- (1) = Specimen
- (2) = Glow Wire
- (3) = Flame
- (4) = Tissue
- (5) = Cotton

IEC 60335-2-21 ; Storage Water Heater 29

L	IEU	
	•	6

IEC 60335-2-21

Edition 6.0 2012-11

INTERNATIONAL **STANDARD**

NORME INTERNATIONALE

Household and similar electrical appliances - Safety -Part 2-21: Particular requirements for storage water heaters

Appareils électrodomestiques et analogues - Sécurité -Partie 2-21: Règles particulières pour les chauffe-eau à accumulation

INTERNATIONAL ELECTROTECHNICAL COMMISSION COMMISSION ELECTROTECHNIQUE INTERNATIONALE PRICE CODE CODE PRIX ICS 13.120; 91.140.65 ISBN 978-2-83220-452-8 Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

Registered trademark of the International Electrotechnical Commissio Marque déposée de la Commission Electrotechnique Internationale

IEC 60335–2–21 (Edition 6: 2011) similar Household and electrical appliances – Safety – Part 2–21: Particular requirement for storage water heaters.

- ✓ To be read in conjunction with Part 1
- ✓ Part 2 covers particular requirement for domestic appliances. Part 2-21 covers storage water heater.

Installation Standards

Swww.teeam.org.my | I teeam52@gmail.com

31 Malaysian Wiring Standards

ALL WIRING WORKS SHALL BE IN ACCORDANCE WITH MALAYSIAN WIRING STANDARDS:

🔇 www.teeam.org.my | 🐠 teeam52@gmail.com

Part/Sections		Ed.	Year
1	Fundamental principles, assessment of general characteristics, definitions	5th	2005
4	Protection for Safety		
Section 41	Protection against electric shock	5 th	2005
Section 42	Protection against thermal effects	3 rd	2010
Section 43	Protection against overcurrent	3 rd	2008
Section 44	Protection against voltage disturbances and electromagnetic disturbances	2 nd	2007
5	Selection and erection of electrical equipment		-
Section 51	Common rules	5 th	2005
Section 52	Wiring systems	3 rd	2009
Section 53	Isolation, switching and control	3 rd	2002
Section 54	Earthing arrangements, protective conductors and protective bonding conductors	3 rd	2010
Section 55	Other equipment	2 nd	2011
Section 56	Safety services	2 nd	2009
6	Verification	1 st	2006

Part/Sections		Ed.	Year
7	Requirements for special installations or locations		
Section 701	Locations containing a bath or shower	2 nd	2006
Section 702	Swimming pools and fountains	3 rd	2010
Section 703	Locations containing sauna heaters	2 nd	2004
Section 704	Construction and demolition site installations	2 nd	2005
Section 705	Agricultural and horticultural premises	2 nd	2006
Section 706	Conducting locations with restricted movement	2 nd	2005
Section 707	Earthing requirements for the installation of data processing equipment (withdrawn).	1 st	1984
Section 708	Caravan Parks, camping parks and other location	2 nd	2007
Section 709	Marinas and similar locations	2 nd	2012
Section 710	Medical Locations	1 st	2002
Section 711	Exhibitions, shows and stands	1 st	1998
Section 712	Solar photovoltaic (PV) power supply system	1 st	2002
Section 713	Furniture	2 nd	2013
Section 714	External lighting installations	2 nd	2011
Section 715	Extra Low Voltage lighting installations	2 nd	2011

Part/Sections		Ed.	Year
7	Requirements for special installations or locations		
Section 715	Extra Low Voltage lighting installations	2 nd	2011
Section 717	Mobile or transportable units	2 nd	2009
Section 718	Communal facilities and workplaces	1 st	2011
Section 721	Electrical installations in caravans and motor caravans	1 st	2007
Section 722	Supply of Electric vehicle (still under development)	<u> 1</u> st	2014?
Section 729	Operating or maintenance gangways		2007
Section 740		datory rement	s AD
	Malaysian Standards		Γ
MS 1979	Electrical Installation of Building - Code of Practice	2 nd	2014
MS 1936	Guide to MS IEC 60364 on Electrical Installations of Buildings	2 nd	2014
MS 2356	Guidance on the application of MS IEC 60364-7-710 for group 2: Medical Locations	1 st	2010

35 MS 1979 – Code of Practice

(1)	MALAYSIAN MS 1979:2007 STANDARD
	ELECTRICAL INSTALLATIONS OF BUILDINGS - CODE OF PRACTICE
	ICS: 91.140.50, 29.020 Descripters, produce, electrical institutions, buildings, readential feature, divetings
	© Copyright 2007 DEPARTMENT OF STANDARD S MALAYSIA

- CoP31 2P switch and 10mA RCD protection for water heater
 - **CoP35** Size of Neutral same size as phase conductor
- CoP36 Reduced size of neutral only at the discretion of P.Eng
- ✓ CoP39 Cable size < 1.5mm² not allowed
- ✓ CoP41 Allowable voltage drop ≤ 4%
- CoP42 soldered cable connection and termination NOT ALLOWED
- CoP44 Cables for final sub circuit shall not be joined
- CoP54 RCD not exceeding 10mA shall be installed for special location (places of public entertainment; wet places; protection of electric water heaters)
- CoP55 RCD to be Regularly tested, at least twice a year

36 MS 1979 – CODE OF PRACTICE

COP31 – Water heater circuits shall have 2-pole switch installed at suitable location. At the vicinity of the heater a socket outlet is required (unswitched is acceptable). Every power circuit for wet-equipment shall be protected individually by a 10 mA rated residual operating current device

HAZARD ZONES IN WET LOCATIONS

IEC 60364–7–701 Classification of FOUR hazard zones for wet locations

Zone O.

is the interior of the bathtub or the shower basin. In those cases where a shower has no basin, the zone extends 50mm above the floor and includes the volume within the vertical surface at a radius of 1.2m from the water outlet position of a demountable shower head, or at a radius of 0.6m from the position of a fixed shower head.

Zone 1.

extends from Zone 0 up to 2.25m above the floor, and outwards to the extent of the bath or basin, or the extent of Zone 0 as defined above where there is no shower basin. It includes the space below a bath or shower tub or basin where that space is accessible without the use of a tool.

Zone 2.

extends outside Zone 1 for 0.6m horizontally and up to a height of 2.25m. If the ceiling height is more than 2.25m, the space above Zone 1 up to 3m is also zone 2

Zone 3.

extends outside Zone 2 for 2.4m horizontally and up to a height of 2.25m. If the ceiling height is more than 2.25m, the space above Zone 2 up to 3 m is also Zone 3

mektricon@gmail.com

🛛 🕄 www.teeam.org.my | 🐠 teeam52@gmail.com

39 IEC 60364-7-701 LOCATIONS CONTAINING BATH OR SHOWER

Plan View – Shower with basin

Plan View – Shower with basin

40 IEC 60364-7-701 LOCATIONS CONTAINING BATH OR SHOWER

Plan View – Shower without basin

(1) When the shower head is at the end of a flexible tube, the vertical central a zone passes through the fixed end of the flexible tube

mektricon@gmail.com

🔇 www.teeam.org.my | 🐠 teeam52@gmail.com

41 IEC 60364-7-701 LOCATIONS CONTAINING BATH OR SHOWER

No switch or socket outlet permitted within 0.60m of the door opening of a shower cabinet.

5

Wiring Installation Bath & Shower

mektricon@gmail.com

🔍 www.teeam.org.my | 🐠 teeam52@gmail.com

Outside Zone 2

43 TYPICAL LANDED PROPERTY

44 LANDED PROPERTY – WIRING CIRCUIT TO WH

mektricon@gmail.com

Swww.teeam.org.my | I teeam52@gmail.com

45

LANDED PROPERTY – WIRING CIRCUIT TO WH

- (1) TNB incoming cables (TT Phase + Neutral)
- (2) TNB meter and cut out fuse
- (3) Earth cable from consumer unit to earth pit
- (4) Earth pit with earth electrode
- (5) Consumer unit (main switch board)
- (6) Circuit to water heater (TNS P + N + PE)
- (7) Switch (2 pole) located at "arm's level"
- (8) Cable from switch to water heater (TNS, P+N+PE)
- (9) Water heater (outside Zone 2)

47 TYPICAL INSTALLATION – HIGH RISE APARTMENT NOTE EARTH LOOP FOR MULTI STOREY

48 WIRING COLOUR CODE

Table 2. Single phase supp	Table 2. Single phase supply: Wire or cable colour code				
Conductor	Colour Code				
Live	Red				
Neutral	Black				
Protective Earthing	Green				
Equipotential bonding	Green				

Table 3. Three phase supply single phase circuit: Wire or cable colour				
9				
Colour Code				
Red				
Yellow				
Blue				
Black				
Green				
Green				

49 WATER HEATER WIRING SCHEME

Table 5. Disconnection scheme of MCB, RCD, disconnector, PE and SEB						
Type of Circuit MCB RCD			Disconnector	Neutral / Protective Earth / SEB		
Single phase	1 pole	2 pole	2 pole	No Break Permitted	1.0	
Three phase	3 pole	4 pole	4 pole	No Break Permitted		

Table 6. Minimum conductor sizes						
Rating (kW)	MCB/RCD	Live	Neutral	PE		
	(Minimum)					
<u><</u> 3 kW	16 A	4 mm ²	4 mm ²	4 mm ²		
> 3 kW to ≤ 5 kW	30 A	6 mm ²	6 mm ²	6 mm ²		
> 5 kW to < 8 kW	40 A	10 mm ²	10 mm ²	10 mm ²		
> 8 kW to < 10 kW	50 A	16 mm ²	16 mm²	16 mm ²		
For rating more than 10 kW, size the cable per MS IEC (IEC) 60364						

50 MINIMUM SIZE OF P.E. (ENERGY LET THROUGH)

70°C	PVC								
cable	es	k= 115	SCct I=	3 kA	5 kA	6 kA	10 kA	15 kA	25 kA
Using	g 20A MC	B class C	t=	0.01 sec	0.01 sec	0.01 sec	0.01 sec	0.01 sec	0.01 sec
S mir	n size of P	E cable		2.61 m ²	4.3 m²	5.2 m²	8.7 m²	13.0 m²	21.7 m²
Using 20A gG Fuse		t=	0.01 sec	0.01 sec	0.01 sec	0.01 sec	0.01 sec	0.01 sec	
S mir	n size of P	E cable		2.61 m²	4.35 m ²	5.22 m²	8.70 m ²	13.04 m ²	21.74 m²

The theoretical minimum Size of P.E. based on energy let through is shown above.

$$S = \frac{\sqrt{I^2 \chi t}}{k}$$

mektricon@gmail.com

COORDINATING CABLE SIZE WITH PROTECTION EXAMPLE: Water Heater Single Phase 3kW ≈ 3kW/(0.9x230V) **Estimate load current** ≈ 14A. (1) $I_B \leq In \leq Iz$ Choose rating of circuit $I_B = 16A$. (2) $I_2 \le 1.45 \text{ x lz}$ Choose protection device $I_n = 20A$ or 30A $(I_n \ge I_B)$ Size cable $I_z \ge I_n$; choose (Table B52-5) 2x6mm² PVC; $I_7 \approx 45A$ OR 2x4mm² PVC; $I_Z \approx 35A$ Check $I_2 \le 1.45I_z \approx 43.5A$ or 29A

		1.45I _z	I _z (cable rating)	Effective trip I ₂	Pass/Fail I ₂ <u><</u> 1.45 x Iz	
	30A; 6mm²	65A	45A	44A	\checkmark	
	20A; 4mm²	50A	35A	30A	\checkmark	
🕄 www.teeam.org.my 🐠 teeam52@gmail.com November 2						

53 COORDINATING PROTECTION

(1) $I_B \le \ln \le lz$ (2) $I_2 \le 1.45 \times lz$

EXAMPLE: Water Heater Single Phase 3kW

30A; 6mm²

20A; 4mm²

54 FAULT CURRENT IN TN-S SYSTEM

mektricon@gmail.com

- (7) Protective device at Main Switch Board
- (8) Others: pressure relief valve

mektricon@gmail.com

Ir. H.P. Looi, B.Eng (Hons), P.Eng, F.IEM, Jurutera Gas

mektricon@gmail.com 9th November 2015