

Power Quality: Issues and Mitigation

COMPANY BACKGROUND

A wholly-owned subsidiary of TNB

Established in 1997, no. of staff 150 (50 Engineers)

Implementer of TNB's Green Energy initiatives & SOLUTION PROVIDER for customers in Green Energy projects and services

Pioneer in Solar Hybrid projects and industry leader in EE services

Scope of Services

With experience and proven track record, TNBES has positioned itself as a solution provider in Green Energy and the leading Energy Services Company (ESCo) of choice

CONTENT

- 1. Introduction Overview
- 2. Problem Statement
- 3. **PQ Mitigation Services**
- 4. Conclusion

TNB PQ Projects – Two Major Initiatives

- 1. Power Quality Monitoring System (PQMS)
 - Started in year 2005
 - Monitor more than 150 substations (2015)
 - Total Investment more than RM10 million

2. Free PQ Services to Customers

- Started in year 2007
- Served more than 140 customers (2015)
- Total Investment more than RM5 million

Power Quality Monitoring System (PQMS)

Developed by TNB for Power Quality Management

It is a centralize integrated Power Quality Reporting, for data captured from monitoring devices installed throughout Peninsula Malaysia as shown on the map

It comprises of a database server connected to backbone whose main function is to gather, store, process and analyze the collected power quality data and to generate useful information for use by management, operating staff and the customers.

Total of 150 monitoring devices has been installed, 59 in Phase I, 16 in Phase II, and 15 in Phase III and 60 in Phase IV

SINGAPORE EXPERIENCE

"Singapore prided itself on providing good infrastructure, but while its power quality is already among the best in the world, it is not good enough for the many high-tech industries which invest here."

> Prime Minister *Goh Chok Tong* was speaking at the ground breaking ceremony of Chartered Semiconductor Manufacturing's S\$3.6 Billion wafer fabrication plant in Woodlands.

	SARFI-70	SARFI-80	SARFI-90
Singapore	4.1	5.0	8.5
EPRI DPQ Project (USA)	17.7	27.3	49.7
UNIPEDE DISDIP Mixed Systems (Europe)	44.0	NA	103.1
UNIPEDE DISDIP Cable Systems (Europe)	11.0	NA	34.6

Notes:

EPRI DPQ: Distribution Power Quality Project carried out by Electric Power Research Institute on 24 utilities in the USA. UNIPEDE DISDIP: Distribution Survey carried out in nine European countries by the Union of International Producers and Distributors of Electrical Energy, Europe Source: http://www.singaporepower.com.sg

JAPAN EXPERIENCE

Lightning is the major cause of Voltage sags

9

Definition of Power Quality

'Any power problem manifested in voltage, current or frequency deviations that results in failure or misoperation of customer equipment'

 For continuous operation, equipment needs continuous rms voltage waveforms and frequencies

 The truth about electrical system: They are not 100% 'clean/sinewave' at certain time only due to external disturbances

OVERVIEW

- Classification of Events
 - Temporary Conditions
 - Transients (<0.5 cycle)
 - Sags and Swells (0.5 cycle 1 minute)
 - Long Term Voltage Variation (> 1 minute)
 - Flicker
 - Steady-State Conditions
 - Harmonics

Voltage Swells

Most PQ problems faced by customers is Voltage Sag

12

U

Voltage Sag - Magnitude & Duration

Power Quality on Voltage Sag

- Voltage sag occurs naturally as a result of lightning strikes, flashovers, power system faults, 3rd party interference (crane, digging, theft), etc
- They cannot totally eliminated because many voltage sags are caused by natural phenomenon

Impact of voltage sag

- Equipment malfunctioned
- Manufacturing process stopped
- Lost productivity, idle people and equipment
- Others

Causes of Voltage Sag (1)

Causes of Voltage Sag (2)

Concept of PQ: Compatibility/EMC problem between the source and the load, not perfection of source

i.e. Power delivered by grid compatible with equipment connected, and vice versa. Why? The causes Voltage sag cannot be eliminated (inherent)

- There are always two solutions to compatibility:
 - Either improve the power, or make the load tougher

Action (shared responsibility): To mitigate the problem

- Utility
- Customers
- Equipment manufacturer
- Regulator
- Standards/Guidelines, Immunity Level, SARFIx

Power Quality is a shared responsibility...

Have role to play

WHERE TO SOLVE THE PROBLEM

Knowledge of Equipment Sensitivity

TNBES (424407 - M)

PROBLEM STATEMENT

The cost of PQ disturbance:

1.Product-related losses, such as loss of product/materials, lost production capacity, disposal charges, and increased inventory requirements.

2.Labor-related losses, such as idled employees, overtime, cleanup, and repair.

3.Ancillary costs, such as damaged equipment, lost opportunity cost, and penalties due to shipping delays.

Source: PQ Baseline Study in Peninsular Malaysia by Energy Commission	Year	International Standards	Total Cost (RM)
	2011	SEMI F47	520,157,000
	2011	IEC 61000-4-34	473,341,000
	2012	SEMI F47	933,545,144
	2012	IEC 61000-4-34	910,445,144

Estimated Losses of Voltage Dip Events

Power Quality Mitigation Services

OBJECTIVE

- 1. To investigate PQ problems faced by the customer
- 2. To identify the most probable 'weak point' or sensitive equipment/processes within the customer facilities
- 3. To establish the sensitivity level of equipment towards voltage sags at the customer facilities
- 4. To establish exposure level towards voltage sags
- 5. To recommend optimum/cost effective solutions and cost benefit analysis

23

SERVICES METHODOLOGY

Flow-chart of the PQ Consultancy Services

TESTING EQUIPMENT - SAG GENERATOR

- Single Phase
 - CHROMA Programmable AC Source (3kVA)
- - PSL Industrial Power Corruptor (200A)

Ride-Through Test (RTT)

Equipment Performance (Ride-through Capability) Evaluation

Normal Supplied Voltage

Generated Voltage (*defined magnitude duration*)

Programmable AC Source (Sag Generator)

26

H

RTT Setup

RTT Setup (3-phase sag generator)

27

Example of RTT Results - Equipment Sensitivity Levels

Guidelines on Ride-through Capability

CBEMA

(Computer Business Equipment Manufacturers Association)

• ITIC

(Information Technology Industry Council)

• SEMI F47

(SEMI – Semiconductor Equipment & Materials International)

 Malaysian Standard MS IEC 61000-4-34 (Class 3)

SEMI F47

30

Figure R1-1 Recommended Semiconductor Equipment Voltage S ag Ride-Through Capability Curve from 0 to 100 Seconds

Voltage Sag Immunity Std in Malaysia MS IEC 61000-4-34, Class 3

😃 ION Vis	ta - guest - [Log Yiew Plotter - Rohm_Wako.AYC_OUT[Use	er Diagram:TNB_7650_PQ-Basic]]	
	dit Options View Window Help		_ 8 ×
<u> </u>	₽ ■ ∞ × B C F ?		
Plot Displa	/		
90	•		
60	Equipment must continu to operate without interrupt during voltag sag above the red line	e	
50	•	→ IEC Standard → Magnitude Phase2]
30			
20			
8.01	0.10	• • • • • • • • • • • • • • • • • • •	
.		4:32 PM	00
🛃 Start] 🖸 🤤 😜 🧼 » 📴 Inbox 한 PQ Au 🔯 I	Nota P 🛛 🕅 Micros 🛛 🔃 🔟 ION VI 🖗 invitati 🛛 🖓 🏷 🖓 💭 р 🎲 🕼	🝳 🎼 🔂 🧶 🚚 🖳 🛯 4:32 PM

Samsung Power Vaccine

Samsung Semiconductor has developed a "Power Vaccine" specification for semiconductor manufacturing equipment, which is far more stringent than the usual power quality immunity specification for this type of equipment, SEMI F47

The Samsung "Power Vaccine" specification requires semiconductor manufacturing equipment to tolerate a complete loss of power for 1 second.

Single-phase PQ Mitigation Equipment

PQ Mitigation Equipment	Type of Energy Storage	Output Voltage Waveform	Ride-through Capability
1a. MiniDySC (Dynamic Sag Corrector)	Ultra-capacitor	Sinusoidal	0% voltage for 50ms
1b. MiniDySC (Dynamic Sag Corrector) - Extended	Ultra-capacitor	Sinusoidal	0% voltage for 200ms
2. Dip-Free	Ultra-capacitor	Square	0% voltage for 1 sec
3. Dip-Proofing Inverter (DPI)	Ultra-capacitor	Square	0% for for 3 secs
4. Voltage Dip Compensator (VDC)	Transformer	Sinusoidal	36% voltage for 2.1s
5. On-Line UPS	Battery	Sinusoidal	0% for >1mins

Three-phase PQ Mitigation Equipment

PQ Mitigation Equipment	Type of Energy Storage	Rating / Capacitty	Ride-through Capability
1. ABB AVC (Active Voltage Conditioner)	Transformer	1. AVC1 : 20 - 60 kVA 2. AVC2 : 165 - 2000 kVA 3. AVC RTS	1. 30% for 10s (1-phase) 2. 30% for 200ms (3-phase) 3. 0% for 30secs
2. Pro-DySC	Ultra-capacitor	10 - 3000 kVA	0% voltage for 50ms 0% voltage for 200ms (extended)
3. Meiden Dynamic Voltage Compensator	1. Ultra- capacitor 2. Battery	1. Ultra-Cap: 350A - 700A 2. Battery : 350A - 1400A	40% voltage for 1 sec

SEMI F47 Compliant Components

D Line Contactors

D Line contactors are Semi F47 compliant and are perfect for EMO contactor contactor applications. D-line contactors are available in 115A and 150A versions. The addition of overloads for motor starting applications create Semi F47 compliant starters. D Line contactors are designed to accept ring terminals for wire termination. All carry UL, IEC, CE mark. <u>Click here for 9 to 32 Amps.</u> <u>Click here for 40 to 150 Amps</u>

F-Line Contactors

F line contactors are Semi F47 compliant and are perfect for EMO contactor applications. F-line contactors range from 185A -780A. The addition of overloads for motor starting applications create Semi F47 compliant starters. F-Line contactors are designed to accept ring terminals for wire termination. All carry UL, IEC, CE mark. Click here for more information.

CA2K and SK Relays

The smallest industrial control relay in the industry. The basic relay is a 2 pole configuration-adding contact blocks converts it into a 4 pole device. Semi F47 compliant with 24Vac and 120Vac coils, and carry UL, IEC, CE mark. A DC version is also available. <u>Click here for more information.</u>

Phaseo DC Power Supplies

Phaseo DC power supplies are new from Square D. Their narrow design saves panel space and all models din rail mount. Available in 2A (48W), 3A (72W), 5A (120W), and 10A (240W) with 12, 24, or 48Vdc output and offer manual or automatic/manual selectable reset capability. The automatic/manual selectable reset models include harmonic filtering circuitry to satisfy EN 6100-3-2. All models are Semi F47 compliant and carry UL, IEC, and CE mark. Click here for more information.

CASE STUDY #1 (DETAILED)

ABC BERHAD

TYRE MANUFACTURING COMPANY

ABC Berhad has been selected based on several complaints on voltage sag experienced by the customer

Located at Taiping, Perak

ABC Berhad, in a relatively short span of a decade, has emerged as a global tyre manufacturer with exports more than 60 countries

CUSTOMER DETAILS

No.	ltem	Details
a.	Customer Name	ABC Bhd
b.	Product	Tyre
с.	TNB Branch/Region/State	Taiping / Perak
d.	Voltage Level	11kV
e.	Source of Supply	PMU Kamunting 132/11kV
f.	Tariff	E2 Industrial
g.	Maximum Demand (MW)	X.X MW
h.	Monthly bill	RM XXX,000
i.	Estimated losses due to PQ events (RM)	Min: XX,000 Max: XXX,000

PQ DISTURBANCE

• Based on discussion held and walkthrough audit:

Date	Description	Time	Tripped equipment
Dutt	Description	6.15	
21-Feb-08	Voltage Dip	pm 7.40	All Boiler house equipment were trip except 1&2
		pm	
			Auxiliary pump 1&2
			Process water pump 2
11-Feb-08	Voltage Dip	11.45	Low pressure air compressor
	vollage Dip	am	High pressure air compressor 3
			Cooling tower pump 1&2
			Cooling tower fan 1, 2 & 3.

EQUIPMENT AFFECTED

No.	Equipments	Additional Information	No of Unit	Level of Sensitivity
a.	Cooling Water Supply Pump	 Main circuit, 415V, 3 phase Control circuit with magnetic contactor, 240V, 1 phase 	3 units	Critical
b.	Water Supply Pump	 Main circuit, 415V, 3 phase Control circuit with magnetic contactor, 240V, 1 phase 	2 units	Critical
с.	Low Pressure Compressor	 Main circuit, 415V, 3 phase Control circuit with magnetic contactor, 240V, 1 phase 	5 units	Sensitive
d.	Cooling Water Return Pump	 Main circuit, 415V, 3 phase Control circuit with magnetic contactor, 240V, 1 phase 	2 units	Sensitive
e.	High Pressure Compressor	 Main circuit, 415V, 3 phase Control circuit with magnetic contactor, 240V, 1 phase 	2 units	Sensitive
f.	CT Pump	 Main circuit, 415V, 3 phase Control circuit with magnetic contactor, 240V, 1 phase 	2 units	Sensitive
g.	Boiler	 Main circuit, 415V, 3 phase Control circuit with magnetic contactor, 240V, 1 phase 	2 units	Sensitive

EQUIPMENT AFFECTED

No.	Equipments	Additional Information	No of Unit	Level of Sensitivity
a.	Cooling Water Supply Pump	Main circuit, 415V, 3 phase Control circuit with magnetic contactor, 240V, 1 phase	3 units	Critical
b.	Water Supply Pump	Main circuit, 415V, 3 phase Control circuit with magnetic contactor, 240V, 1 phase	2 units	Critical
c.	Low Pressure Compressor	- Main Fuit, 415V, 3 phase - Control Fruit with magnetic contactor, 240V, 1 ph	5 units	Sensitive
d.	Cooling Water Return Pump	 Main circuit 15V, 3 phase Control circuit with magnetic contactor, 240V, 1 phase 	2 ts	Sensitive
e.	High Pressure Compressor	- Mai - Con 240V, 1 phase	its	Sensitive
f.	CT Pump	 Main circuit, 415V, 3 phase Control circuit with magnetic contactor, 240V, 1 phase 	2 units	Sensitive
g.	Boiler	 Main circuit, 415V, 3 phase Control circuit with magnetic contactor, 240V, 1 phase 	2 units	Sensitive

IMMUNITY LEVEL

Cooling Water Pump No 1 Control Circuit

IMMUNITY LEVEL

42

EXPOSURE LEVEL

- ABC Berhad is exposed to voltage sag from transmission (132kV and above) and distribution (11kV) system that can be due to any fault in TNB systems as well as fault in customer's plant/substation
- The effect of the voltage sag on equipments in ABC Berhad depends on the severity of the voltage sag and the immunity level against voltage sag of the equipments itself
- Voltage sag data was extracted from PQ recorder installed at PMU KAMUNTING (incorporated in TNB Power Quality Monitoring System) to match ABC Berhad disturbance record
- Based on SARFI Index, the exposure level for ABC Berhad can be determined.

SARFI INDEX

SARFI Index for PMU Kamunting 132kV/11kV

SARFI	Sep-10	2009	2008	2007	2006	Apr-05	Average per year
90	10	15	23	13	18	18	17.91
80	6	11	17	12	12	7	12.00
70	1	4	8	6	4	1	4.43
60	1	3	6	4	1	0	2.77
50	1	3	4	4	1	0	2.40
40	0	1	0	1	0	0	0.37
30	0	0	0	0	0	0	0.00
20	0	0	0	0	0	0	0.00
10	0	0	0	0	0	0	0.00
0	0	0	0	0	0	0	0.00

Note:

SARFI (System Average RMS Variation Frequency Index) is an index counting the number of voltage sag event below certain levels. For example, SARFI-70 is a number of voltage sag events for voltage sag below 70%.

EXPOSURE LEVEL

45

EXPOSURE LEVEL

Voltage Sag Events [MS IEC 61000-4-34] at PMU Kamunting 132/11kV versus Immunity Level Of Water Supply Pump

- Mitigation solution is proposed to improve the immunity level of the machine by installing single-phase mitigation equipment
- This is proving by installation of PQ Mitigation Equipment (PQME), Dip Proofing Inverter at the circuit during Ride-Through Test (RTT)
- DPI can support the voltage missing up to 0% for 1 second
- DPI is the most popular solution for mitigating voltage sag because the range of its price is inexpensive and free maintenance compare to Uninterruptable Power Supply (UPS).

Immunity Level Of Cooling Water Pump Before and After Mitigation

48

Immunity Level Of Water Supply Pump Before and After Mitigation

49

ECONOMIC ANALYSIS

• Cost Benefit Analysis for Cooler Water Pump

No.	Descriptions	Without PQ Mitigation Equipment (A)					
1	Number of Events/Year	≈ 4	≈ 1				
2	Estimated Production Loss per year						
a	Maximum mentioned: RM10,000/event/machine	RM40,000	RM10,000				
	Minimum mentioned: RM1,000/event/machine	RM4,000	RM1,000				
3	Savings : [(A) - (B)]						
a	Maximum assumed:	RM30),000				
b	Minimum assumed:	RM3	,000				
4	Cost of Solution	RM15,000)/machine				
5	Payback Period (year) : [(4) / (3)]						
a	Maximum assumed:	0.5 year (6 months)				
b	Minimum assumed:	5.0 years (60 months)				

ECONOMIC ANALYSIS

• Cost Benefit Analysis for Water Supply Pump

No.	Descriptions	Without PQ Mitigation Equipment (A)				
1	Number of Events/Year	≈ 2	≈ 1			
2	Estimated Production Loss per year					
	Maximum mentioned: RM10,000/event/machine	RM20,000	RM10,000			
	Minimum mentioned: RM1,000/event/machine	RM2,000	RM1,000			
3	Savings : [(A) - (B)]					
a	Maximum assumed:	RM18,000				
b	Minimum assumed:	RM9	,000			
4	Cost of Solution	RM15,000)/machine			
5	Payback Period (year) :[(4) / (3)]					
а	Maximum assumed:	0.8 year (1	0 months)			
b	Minimum assumed:	1.7 years (20 months)			

RECOMMENDATION

- It is recommended that ABC Berhad Berhad to consider installing appropriate mitigation equipment permanently as follows:
 - Cooling Water Pump DPI of 1.3kVA
 - Water Supply Pump DPI of 1.3kVA
- The installation of the DPI for Cooling Water Pump and Water Supply Pump will improve the immunity level of the equipments against voltage sag and hence will save ABC Berhad from production loss
- Based on the cost-benefit analysis, the solution is feasible with relatively short payback period.

The objectives of the study were achieved, where:

- 1. To investigate PQ problems faced by the customer
 - **1.** Based on complaint by the customer, they suffered from Voltage Sag events
- 2. To identify the most probable 'weak point' or sensitive equipment/processes within the customer facilities
 - 1. Cooling Water Pump
 - 2. Water Supply
- 3. To establish the sensitivity level of equipment towards voltage sags at the customer facilities
 - 1. Cooling Water Pump 66% for 1 second
 - 2. Water Supply Pump 50% for 1 second

4. To establish exposure level towards voltage sags

- 1. Cooling Water Pump 3.88 events per year
- 2. Water Supply Pump 2.40 events per year
- 5. To recommend optimum/cost effective solutions and cost benefit analysis
 - 1. Cooling Water Pump Dip Proofing Inverter of 1.3kVA
 - 2. Water Supply Pump Dip Proofing Inverter of 1.3kVA

ABC Sdn Bhd

Semiconductor Manufacturing Company

Batu Berendam, Melaka

ABC Sdn Bhd has been selected based on a complaint on voltage sag experienced by the customer

IMMUNITY LEVEL - TEST RESULTS

No	Equipment Under Test	Immunity Level (Ride Through Capability)	MS IEC 61000 / SEMI F47
1.	Wire Bond 230Vac Primary Circuit	Voltage sag at VL – N a) 0% voltage sag up to 20ms b) 70% voltage sag up to 1s	NOT COMPLY (SEMI F47)
2.	VDC for Air Compressor 240Vac Secondary Circuit	 Voltage sag at VL - N a) 0% voltage sag up to 20ms b) 20% voltage sag up to 100ms c) 30% voltage sag up to 1s 	COMPLY (MS IEC)
3.	MiniDySC 6A for Air Compressor 120Vac Control Circuit	Voltage sag at VL – N a) 10% voltage sag up to 1000ms	COMPLY (MS IEC)
4.	UVR 1 for Chiller 2 110V Control Circuit	Voltage sag at VL – N a) 70% voltage sag up to 1000ms	NOT COMPLY (MS IEC)
5.	UVR 2 for Chiller 2 110V Control Circuit	Voltage sag at VL – N a) 50% voltage sag up to 1000ms	NOT COMPLY (MS IEC)
6.	MiniDySC 25A for Chiller 2 120Vac Control Circuit	Voltage sag at VL – N a) 30% voltage sag up to 500ms b) 90% voltage sag up to 900ms	NOT COMPLY (MS IEC)

5

EXPOSURE LEVEL

57

XYZ Sdn Bhd

World's Largest Fine and Ultra Fine Copper Wire Manufacturing Company

Bentong, Pahang

IMMUNITY LEVEL - TEST RESULTS

No	EUT	Immunity level (Ride Through)	MS-IEC
1.	Enamelling Machine V201 - 385 Vac Main Circuit	 Voltage Sag at phase voltage L-L a) 0% voltage sag up to 20ms b) 40% voltage sag up to 200ms c) 70% voltage sag up to 500ms d) 90% voltage sag up to 1000ms 	Not Comply

EXPOSURE LEVEL

Cement Plant

Rawang, Selangor

Sensitive & critical equipment

- Kiln Pre-heater fan 11kV, 2300kW motor (2 units)
- Kiln EP exhaust fan 3.3kV, 430kW (2 units)
- Number of Disturbance to the plant due to voltage sag events
 2004: 5, 2005: 7, 2006: 4, 2007: 1
- Estimated Losses due to voltage sag event
 between RM28k and RM193k

Exhaust Fan Control Circuit

REMARK

2 ER

84

84

OC(%) OP(%

99

99

CT& AM- CT

150/5

150(450)

(A) METERIAJ 2NDARY TURN

150/5 2.9 (A) 150(450)

2.9(A)

2

2

PF,

(A)

52

300

300

@TERMINALS FOR EXTERNAL CABLE *DEVICE OF EXTERNAL MCD : CENTRAL CONTROL DESK

5	Jan. 31-22	CHG. In	MY
1	124.51.79	CHG.	11.2

в

C

D E

G

н

J

顶京芝浦電気株式会社 TOSHIBA CORPORATION TOKYO JAPAN

INSTALLATION OF PQ MITIGATION EQUIPMENT

- 4 units of single-phase PQME (DPI and VDC)
- Details of DPI/VDC : 110V, 1 kVA
- Protection for control circuits
- Commissioning date : 17 Apr 2008

Chemical Plant

Gebeng, Kuantan, Pahang

- Sensitive & critical equipment
 - AC Adjustable Speed Drive for Quencher Pump 0.415kV 224kW Motor (2 units)
- Number of Disturbance to the plant due to voltage sag events
 2006 : 7, 2007 : 9

Findings

- RTT conducted on the control circuit of ABB drive ACS 600
- Existing immunity level at 65% for 0.2 sec, 70% for 1 sec for drive incoming contactor
- Trial run on the contactor coil circuit using DPI
- Latest event on 23 Oct 2007 (sag to 25% for 310ms) showed that the DPI supported the contactor coil during the voltage sag

69

Drive's Incoming Contactor

Voltage sag from single-phase fault will cause the contactor to open. Once the contactor opens, the drive will experience a total loss of supply

Drive's Incoming Contactor

Exposure Level : Before Mitigation = 10 events/year After Mitigation (partial) = 0 events/year

CASE STUDY #6

Electronics Plant

Kota Bharu, Kelantan

List of sensitive & critical equipment

Diode production machine

Findings

- Diode production machine consists of a welder and a controller
- Existing immunity level : Welder at 85%, controller at 60%

ELECTRONICS PLANT

SOLUTION - VECTEK ACTIVE VOLTAGE CONDITIONER (AVC) AT WELDER (200V)

INSTALLATION OF AVC

- AVC was installed at the 200V system of the DWA Machine (welder circuit)
- AVC Details: 50kVA, 200V, 3-phase
- Commissioning Date: 30 Aug 2007

DWA IMMUNITY LEVEL WITH AVC @ WELDER

AVC able to support voltage sag to 40% and above on 200V system (Welder circuit)

Controller vs Welder

AVC PERFORMANCE

I A R B & X B & E ?

- Analysis | Photos Diagram

PMU Panchor 33kV					Δ	VC Input	t - 210V		A۱	/C Outpı	ıt - 210V	
timestamp	Duration (sec)	Phase 1	Phase 2	Phase 3	Duration (sec)	Phase 1	Phase 2	Phase 3	Duration (sec)	Phase 1	Phase 2	Phase 3
07/05/2007@12:25:28	0.409	72	72	73	0.421	69	70	70	0.01	90	89	90
04/05/2007@22:59:08	0.421	76	96	103	0.420	92	93	77	0.009	105	102	111
04/05/2007@21:52:25	0.439	74	95	96	0.429	92	93	77	0.009	96	97	88

10 TAG. 11 CC - CO-

ft Outlook 🔄 135.36.00.11 - Termi... 😓 🌫 🖗 🗮 🕲 😋 🖞 🗮 😰 💷

PMU Panchor /

4 May 2007 @ 21.52

Electronics Plant

Seremban, Negeri Sembilan

Findings

- Facilities (chiller & compressor) already protected by a single-phase mitigation equipment
- Production area protected by UPS
- Some UPS in bypass mode suspect batteries failure
- Critical equipment
 - PLC has two types of power module input power
 - Two separate terminals : 100V 120V or 200V 240V (+10% to -15%)
 - One universal terminal : 85V to 264V
- PLC with universal terminal has better immunity level if correct supply voltage is selected
 - Universal terminal : 85V to 264V
 - Using 100V supply : Immunity level = 85% (85V)
 - Using 200V supply : Immunity level = 42.5% (85V)

Electronics Plant, Seremban

PLC with universal terminal has better immunity level if correct supply voltage is selected

79

PQ AUDIT & TESTING

PQ AUDIT & TESTING

PQ AUDIT & TESTING

THANK YOU

TNB Energy Services Sdn. Bhd. 4th & 5th Floor, East Wing Quattro West No. 4 Lrg Persiaran Barat - 46000 Petaling Jaya Tel: +603 7662 5111 Fax: +603 7662 5112/5113

Solution Provider for:

Power Quality #

CE JARD PROG

- Energy Efficiency
- Renewable Energy
- Power System Study

Making It Happen, Getting It Done