

Sensata Technologies

SENSATA EXPERIENCE - PQ SERVICE

The World Depends on Sensors and Controls

Overview

- **SENSATA** at a glance
- Background
- Study by PQ solution provider
- Solutions
- Results

Sensata Technologies Malaysia

a Proprietary Information – Strictly Private

Sensata-At-A-Glance

Attleboro, MA Business Center

• Sensata makes approximately 20,000 different products that are highly–engineered and application-specific.

- We ship about 1 billion devices a year.
- Business Centers, Product Development Centers and manufacturing sites in nine countries.
- We have about 11,000 employees worldwide.
- Typical household uses 30 or more Sensata components (home and car)
- Most airplanes use more than 1,500 Sensata circuit breakers and switches

Sensata Proprietary Information – Strictly Private

Sensata

Technologies

Sensata Malaysia – Products and Growth

MSG (Microfused Silicon Strain Gage)

OWS (Occupant Weight Sensor)

DPS (Differential Pressure Sensor)

RPS (Relative Pressure Sensor)

Cost of disruption

190,000,000 X 3.3 = RM 627,000,000

365 days = 365 x 24 = 8,760 hours

Sensata

Technologies

Automotive Sensors

Sensata

Overview

- SENSATA at a glance
- Background
- Study by PQ solution provider
- Solutions
- Results

Site information

No.	Items	Details
a.	Company name	Sensata Technologies (M) Sdn. Bhd.,
b.	Business Type/Product	Sensor Manufacturer (Automotive)
C.	TNB Branch/Region/State	Subang Jaya, Selangor.
d.	Incoming Voltage	11kV
e.	Source of Supply	PPU Seafield 2 33/11kV, PMU Proton 132/33kV
f.	Tariff	E2: Industrial
g.	Maximum Demand (MW)	2.86MW
h.	Monthly bill (estimated)	RM 680,000
i.	Estimated losses due to PQ events	RM 70,000 / hour (revenue loss)

ata Sensata

PQ disturbance experienced at Sensata

Disturbances experienced by SENSATA (until Oct) are as below:

- ≻15 Sept
- ➢ 5 Oct
- ≻16 Oct
- ≻30 Oct

Affected Equipments:

 Facilities Department Chillers - TRANE Compressors
 Production Machines Honda 1, Honda 2 and ATS

Domino effect: Cooling tower, PCW, Production Machines

Voltage Sag data from PMU PROT (33kV) – TNB PQMS

Date	Time	V1(%)	V2(%)	V3(%)	Duration (s)	Min V (%)
5-Oct	10:48AM	84	52	52	0.120	52
30-Oct	4:41:58 PM	16	16	16	0.100	16

PQ disturbance analysis

Observation & moving forward

 \checkmark It is evident that the some of the affected equipments are too sensitive to voltage sag.

✓ To perform MS IEC 61000 Compatibility test thru voltage variations immunity tests or Ride Through Test (RTT) to the affected equipments

✓ Determine the best fit mitigation plan

Sensata

Affected chillers (No 3 is new chiller)

Overview

- SENSATA at a glance
- Background
- Study by PQ solution provider
- Solutions
- Results

PQ services activities

Task 1 (Preliminary Study):

- > PQ Briefing, preliminary discussion & site visit
- Arrangement with OEM, operation side

Task 2 (RTT):

- Chiller (TRANE). No 1,2 and 3
- One unit after another

Task 3 (PQ Solution):

Recommendation & PQ optimum mitigation solution based on RTT result, production loss etc.

Commission and verify results

Ride Thru Test

Single Phase RTT using CHROMA (3kVA)

Existing supply to the Equipment Under Test (EUT) is disconnected and replaced with the CHROMA Sag Generator.

Simulation of voltage sag of different magnitude and duration were injected to the EUT.

> EUT is observed to determine the ride through against programmed voltage sag.

Ride Thru Test (findings)

Equipment Under Test	Immunity level	MS IEC 61000-4-11
CHILLER 1 (Trane 400RT) Control Circuit 1.110Vac 2.24Vac	 ✓ 75% voltage sag for 100ms & 90% voltage sag for 1 sec ✓ 0% voltage sag for 200ms & 40% voltage sag for 1 sec 	Not Comply Comply
CHILLER 2 (Trane 420 RT) Control Circuit 1.110Vac 2.27Vac	 ✓40% voltage sag for 200ms & 70% voltage sag for 1 sec ✓0% voltage sag for 200ms & 70% voltage sag for 1 sec 	Comply Comply

Recommendation:

To install mitigation equipment to improve chiller 1
 To comply with SEMI F-47 standard or MS IEC 61000

Overview

- SENSATA at a glance
- Background
- Study by PQ solution provider
- Proposed solutions
- Results

Objective

- To protect the control circuit (110Vac) of Chiller 1 toward voltage sag and comply with MS IEC61000-4-11 and SEMI F47
- To improve the sensitivity level of the Chillers towards voltage sag

Sensitivity level of Chiller 1

Task 3: PQ solution (options)

The single-phase mitigation equipment was proposed to be installed at the secondary side of isolation transformer 1T2 (110V,1248VA)

PQ Mitigation Equipment	Type of Energy Storage	Output Voltage Waveform	Ride-through Capability
1a. MiniDySC (Dynamic Sag Corrector)	Ultra-capacitor	Sinusoidal	0% voltage for 50ms
1b. MiniDySC (Dynamic Sag Corrector) - Extended	Ultra-capacitor	Sinusoidal	0% voltage for 200ms
2. Dip-Free	Ultra-capacitor	Square	0% voltage for 1 sec
3. Dip-Proofing Inverter (DPI)	Ultra-capacitor	Square	0% for for 3 secs
4. Voltage Dip Compensator (VDC)	Transformer	Sinusoidal	36% voltage for 2.1s
5. On-Line UPS	Battery	Sinusoidal	0% for >1mins

Task 3: PQ solution

Sensata Technologies

Considering the exposure level for the chiller (tackling \sim 90% of the PQ issues), cost factor, recommendations from OEM

Single - phase PQME:

Voltage Dip Compensator (VDC) – 120V, 3kVA.

Available rating of VDC (208V): 1kVA, 3kVA, 5kVA.

Type of PQME installed	Immunity level (Ride Through Capability)	Resultant Exposure level (Estimated per year)
VDC	36% voltage for 2s	(3/46)*12 = 0.78

Task 3: PQ solution (Summary)

No	Description	Without PQME [A]	With PQME [B]
1.	Number of event per year	~14	~1
2.	Estimated Production Loss per year*:		
	a. Maximum: RM50,000/event	700,000	50,000
	b. Minimum: RM20,000/event	280,000	20,000
3.	Savings: [A – B]		
	a. Maximum	450,0	000
	b. Minimum	180,000	
4.	Cost of Solution (excl. installation):	25,000 (2 units)	
5.	Payback Period: [4 / 3] year		
	a. Maximum	25,000/180,0	000 = 0.13
	b. Minimum	25,000/450,000 = 0.05	

- Install mitigation equipment for Chiller 1 control circuit – ROI < 2 months

Installation details

Date of Installation & Commissioning	:	7 March 2011
Equipment to protect	: Control circuit (110Vac) of Chiller 1	
Detail of VDC installed		Chiller 1 Model: VDCL6T3K120 Capacity: 120Vac, 3kVA, 24A Serial #: 11-0001 Date Manufactured: 01/28/11 F/W Ver:1.7 Support setting: 90% (support threshold) and 2.0 sec (support duration)
Accessories	•	Housed Bypass Switch 25Amps x 2 units Model: BPSW25A

Actual installation

Installed at unit no 1 and no 2

Actual commissioning (Chiller 1 & 2)

Overview

- SENSATA at a glance
- Background
- Study by PQ solution provider
- Proposed solutions
- Results

Conclusion

- Setting for the VDCs are to start support: 90% of nominal voltage, duration 2 sec
- Immunity level of Chiller 1 and Chiller 2 increased after installation of VDC as below. Comply with MS IEC61000 & SEMI F47
- Next step production side sensitive tools

Sensata

The World Depends on Sensors and Controls

THANK YOU