Safety & Survival of Electric Cables

Presented by Lokman A. Dahlan Technical Advisor

Design Requirements

- Satisfies **power** needs
- Flexible
- Reliable
- Has LONG life
- Minimal maintenance
- Economic

In relation to electric cables, safety..

- Is not a design requirement
- Prescribed by system designer
- Constructed as prescribed
- Appropriately installed by trained/competent installer
- Safely managed by users

Initiation stage

Years	<1	0-35	30-40	>40
Phase	Initiation stage	The Golden years	The Pensioner	The End
Failure freq	Diminishing	Erratic - low	Erratic - high	Increasing, exponentially
Key suspects	installation (workmanship)	physical damage (external)	imperfections (internal)	"unknown" (expired)
Action	repair & make good	cut & joint	replace cable length	replace cable lengths

Cable life is..

The end of useful life

- Upon reaching a state of system instability OR
 - As prescribed by "experts" and/or from experience

Cable life ?

Commentary on IEE Wiring Regulations 16th Edition BS 7671 : 2001

published 2002

UPDATE issued 15 April 2004

Introduction to amendment to 6.1.3

The recent interest shown in the section on ageing of cables has shown that engineers are interested in this rather non specific aspect of installation design and prompted the provision of a little more information and a specific reference.

6.1.3 Ageing of cables 131-06, 433-01

Estimating the life of a cable can only be approximate because of the obvious difficulties in accumulating data. There is a general understanding that p.v.c. cables with a continuous conductor operating temperature of 70 °C have a life of 20 years. There is also a rough guide that for each 8 °C increase in core conductor continuous operating temperature above 70 °C the life of the cable will be halved. A p.v.c. cable running with an overload such that its core conductor temperature is 78 °C will last for 10 years.

The general equation for ageing is:

$$\log_{\bullet} t = \frac{A}{T} + A^{2}$$

where:

t = time in hours T = absolute temperature K (273 + °C)A = a constant 15 028 for PVC, 14 500 for EPR and PRC

 A^1 = a constant -31.6 for PVC, -27.19 for EPR and PRC

Table 6 provides further guidance.

Life termination is assumed to be on the appearance of cracks on samples of cables wound on their own diameter.

Life until deterioration ¹						
Material	P۱	/C	EPR and PRC ⁵			
Temperature (°C) ²	Permanent Rating ³	Normal Rating ⁴	Permanent Rating ³	Normal Rating ⁴		
70 75 80 85 90 95 100 105 110 115 120 125 130 135 140	23 yrs 12 yrs 7 yrs 4 yrs 2 yrs 14 mths 8 mths 5 mths 3 mths 2 mths	69 yrs 37 yrs 20 yrs 11 yrs 6 yrs 43 mths 25 mths 9 mths 5 mths	69 yrs 39 yrs 23 yrs 13 yrs 8 yrs 5 yrs 3 yrs 23 mths 14 mths 9 mths 6 mths 4 mths	69 yrs 40 yrs 24 yrs 15 yrs 9 yrs 69 mths 43 mths 27 mths 18 mths 12 mths		
Temperature indices: Duration 5000 h Duration 20000 h	101 °C 89 °C			1°C 1°C		

TABLE 6 Life until deterioration against conductor core temperature

Notes: 1. The values indicated are only orders of magnitude due to the different types of materials and the great dispersion of the complex ageing phenomena of these materials.

- 2 The temperature referred to is that of the cable conductor resulting from the ambient temperature and its own temperature rise.
- 3 Permanent rating load/temperature maintained 24 hours a day
- 4 Normal rating load/temperature maintained 8 hours a day
- 5 PVC-polyvinyl chloride, EPR-ethylene/propylene rubber, PRC chemically reticulated polyethylene.

From IEC 943, 1989

Cable loadings are rarely constant, estimates can be made of the combined affects of different loadings by the use of the formulae below:

					where:
1	1	a	ь	c	I^1 I^2 and I^3 = lines at exactly terms at the
	= — {·	-+	-	+	L, L and L – nves at specific temperature
L	24	L^1	L^2	L^{3}	L^1 , L^2 and L^3 = lives at specific temperature a, b, c, etc. = hours in day at these temperatures

Bibliography

Chapter 6

IEC 943: Guide for the specification of permissible temperature and temperature rise for parts of electrical equipment, on particular for terminals

Cable Life – Contributing Factors

- Internal the requirements of specifications & relevant standards, construction, manufacture, tests and transportation of cables to site
- Operational the manner of handling, installing, jointing & terminating, loading and servicing as per system design
- External the conditions endured by the cables in service

The quadrants of cable life

Designed	Installed & operated
as required,	as intended,
installed & operated	NOT designed
as intended	as required
Designed as required, NOT installed or operated as intended	NOT designed, NOT installed or operated as intended

Cable Standards - International

Polyvinyl Chloride insulated • IEC 60227 cables 450/750V Cables with extruded • IEC 60502 insulation 1-33kV Paper Insulated 1-33kV • IEC 60055 Tests for cables with extruded • IEC 60840 insulation >33 - 150kV • IEC 60811 Common test methods for cable insulation and sheaths • IEC 60287 Calculation of Current Rating

Malaysian Standards (MS) on Cables

1	MS 2108: 2007	Electric Cable : 6.35/11(12)kV single core XLPE insulated cables – non-armoured	
2	MS 2109: 2007	Electric Cable : 6.35/11(12)kV single core XLPE insulated cables – armoured	
3	MS 2110 :2007	Electric Cable : 19/33(36)kV single core XLPE insulated cables – non-armoured	
4	MS 2111: 2007	Electric Cable : 19/33(36)kV single core XLPE insulated cables –armoured	
5	MS 2113*	Electric Cable : 12.7/22(24)kV single core XLPE insulated cables – non-armoured	
6	MS 2114*	Electric Cable : 12.7/22(24)kV single core XLPE insulated cables – armoured	MV-XLPE
7	MS 2115*	Electric Cable : 6.35/11(12)kV three core XLPE insulated cables - non-armoured	
8	MS 2116*	Electric Cable : 6.35/11(12)kV three core XLPE insulated cables –armoured	
9	MS 2117*	Electric Cable : 12.7/22(24)kV three core XLPE insulated cables –armoured	
10	MS 2118*	Electric Cable : 2.7/22(24)kV three core XLPE insulated cables –armoured	
11	MS 2119*	Electric Cable : 19/33(36)kV three core XLPE insulated cables –armoured	
		Electric Cable : 19/33(36)kV three core XLPE insulated cables –armoured	
13		Electric Cable and Wire: 600/1000(Um = 1200) V single core XLPE insulated cable – non-armoured	
	1	Electric Cable and Wire: 600/1000(Um = 1200) V single core XLPE insulated cable –armoured	LV-XLPE
15		Electric Cable and Wire: 600/1000(Um = 1200) V multi core XLPE insulated cablenon-armoured	
16	MS 2107: 2007	Electric Cable and Wire: 600/1000(Um = 1200) V multi core XLPE insulated cable –armoured	
17	MS 2100:2006	Electric Cable and Wire: 600/1000(Um = 1200) V single core PVC insulated cable – non-armoured	
18	MS 2101:2006	Electric Cable and Wire: 600/1000(Um = 1200) V single core PVC insulated cable –armoured	LV-PVC
19	MS 2102:2007	Electric Cable and Wire: 600/1000(Um = 1200) V multi core PVC insulated cable –non-armoured	LV-FVC
20	MS 2103: 2007	Electric Cable and Wire: 600/1000(Um = 1200) V multi core PVC insulated cable –armoured	
21	MS 2112-1: 2009	Electric Cable and Wire: Polyvinyl Chloride(PVC) insulated cables of rated voltages up to and including 450/750 V - Part 1 : General requirements	
22	MS 2112-2: 2009	Electric Cable and Wire: Polyvinyl Chloride(PVC) insulated cables of rated voltages up to and including 450/750 V - Part 2 : Test Methods	
23	MS 2112-3: 2009 **	Electric Cable and Wire: Polyvinyl Chloride(PVC) insulated cables of rated voltages up to and including 450/750 V - Part 3 : Non-sheathed cables for fixed wiring	450/750V-PVC
24	MS 2112-4: 2009 **	Electric Cable and Wire: Polyvinyl Chloride(PVC) insulated cables of rated voltages up to and including 450/750 V - Part 4 : Sheathed cables for fixed wiring	450/75004100
25	MS 2112-5: 2009 **	Electric Cable and Wire: Polyvinyl Chloride(PVC) insulated cables of rated voltages up to and including 450/750 V - Part 5 : Flexible cables	
26	MS 2112-6: 2009 **	Electric Cable and Wire: Polyvinyl Chloride(PVC) insulated cables of rated voltages up to and including 450/750 V - Part 6 : Cables for Lifts and flexible connections	
27	MS 2121*	Telecommunication Cable : Plastic Twin pair, triple and unit types, internal cable	
28	MS 2122*	Telecommunication Cable : Jumper cable	
29	MS 2123*	Telecommunication Cable : Self supporting drop wire	Telecoms
30	MS 2124*	Telecommunication Cable : Fully Filled Unit Twin moisture barrier polyethylene sheathed cable (FF PEUT)	Telecomo
31	MS 2125*	Telecommunication Cable : Integral Barrier Unit Twin moisture barrier poly ethylene sheathed cable (IB PEUT)	
32	MS 2126*	Telecommunication Cable : Poly ethy lene Insulated 25 Pair Unit Twin moisture barrier poly ethy lene sheathed cable (FS PEUT)	
	· · · · · · · · · · · · · · · · · · ·		

Overview of Standards & Quality of Cables

Lim (max voltago)	Class	Ref Stds & Specifications		Risk	Control on Quality & Increation	
Um (max voltage)		Existing/Prev	New	I/I2V	Control on Quality & Inspection	
Above 170kV	EHV	Utility	Utility	Nil	High scrutiny at all levels	
37kV - 170kV	ΗV	IEC/Utility	IEC/Utility	VLow	High sampling rate of test & inspection	

3.7kV - 36kV	MV	BS/IEC/Utility	IEC/MS	Low	Adequate control on test & inspection
1.2kV - 3.6kV	LV	BS/IEC/Owner	IEC/MS	Low	Adequate control on test & inspection

Below 1.2kV	ELV	BS/MS	MS	High	Minimum or no control

SUB-STANDARD CABLES

Cables which are not designed, constructed, test approved, installed or used in accordance to their prescribed standards and/or specifications

The development of national standards for electric cables takes into account the principles and norms as established internationally, current prevailing conditions and local practices. It is important to understand that these aspects are majorly unbeknown to buyers and users, hence <u>failure to comply</u> <u>on critical aspects may present an undetermined risk on safety.</u>

Myths of Sub-Standard Cables

- Conductors are smaller due to "technological improvements"
- Copper purity is higher
- Able to withstand higher temperatures hence more current
- The standards have "changed"
- "There is no problem, it still works.."

Anatomy of Sub-Standard Cables

PHOTOGRAPH OF TEST SAMPLE

REPORT NO.: 2007ED121	PAGE: 2 OF 8
This Test Report refers only to sampled automated by the applacements SIR Sds. Bhd. This test report shall not be reproduced, except in full and the written approval from Executive Director, SIR/M QAS International Sdr	

NOTES:

ADDITIC

1. This is a partial test report.

2. All the tests were conducted at SIRIM QAS International Sdn. Bhd. And had been checked in accordance with the following clauses

a) Clause 5.1, 6.2, 7.2, 7.3, 7.4, 19.3 and 22.3 of MS 140: 1987 b) Clause 7.1, 7.2, 7.3 and 7.4 of MS 69: 1995 c) Tensile & elongation (before ageing) and resistance to crack of MS 138: 1995

 The test sample as described in this test report deened to comply with the requirements of those test conducted except clause 7.2 and 7.4 of MS 69: 1995 and tensile & elongation (before ageing) of MS 138: 1995

PHOTOGRAPH OF TEST SAMPLE

REPORT NO.: 2007ED122	PAGE: 2 OF 8
This Test Report refers only to samples submitted by the applicant to a lik 5.6. [IN] This sist report shall rule be reportured, except in fail and sh written approval from Executive Director, SIRIM QAS International Sen	all not be used for advertising purpoint by any means or forms without

NOTES:

1. This is a partial test report.

ADDITIONAL INFORMATION:

- All the tests were conducted at SIKIM QAS International 50n, Bhd. And had been checked in accordance with the following clauses;
- a) Clause 5.1, 6.2, 7.2, 7.3, 7.4, 19.3 and 22.3 of M5 140; 1987 b) Clause 7.1, 7.2, 7.3 and 7.4 of MS 69; 1995 c) Tensile & clongation (before ageing) and resistance to crack of MS 138: 1995
- The test sample as described in this test report deemed to comply with the requirements of those test conducted except clause 7.2 and 7.4 of MS 69: 1995 and tensile & elongation (before ageing) of MS 138: 1995.

REPORT NO.: 2007ED123	PAGE: 2 OF 7					
This Test Report refers only to sample submitted by the applicance to SICIM QAS International Sdr. Bhd. and tested by SIRUM QAS International Sdr. Bid. This has report shall not be reproduced, except in fail and thall not be used for advertising purposes by any means or forms without written approval. This Executive Director, SIKIM QAS International Sds. Bidd						

NOTES:

2. All the tests were conducted at SIRIM QAS International Sdn. Bhd. And had been checked in accordance with the following clauses;

a) Clause 5.1, 6.2, 7.2, 7.3, 7.4, 19.3 and 22.3 of MS 140: 1987 b) Clause 7.1, 7.2, 7.3 and 7.4 of MS 69: 1995
 c) Tensile & elongation (before ageing) and resistance to crack of MS 138: 1995

The test sample as described in this test report deemed to comply with the requirements of those test conducted except clause 5.1 of MS 140-1967, clause 7.2 and 7.4 of MS 69: 1995 and tensile & elongation, (before ageing) of MS 128: 1995.

DITIONAL INFORMATION:		
I. Tested by : Effahaikal Mahmudi	Signature : 15	Date: 3/01/08
2. Checked by: Mr.Surian Rasol	Signature : RL	Date: 3/1 18

- 3. Date of test sample(s) received;
 - a) [4 submission :] | October 2007
 - b) 2nd submission : -
 - c) 3rd submission ; +

c) 3^{ro} submission ; +

Date: 3/01/08

2/01/02

¹ This is a partial test report

Sub-Standard Cables - Electrical Properties

Item	Flexible Cable 40/0.16mm (0.75sqmm) x 3C				
Reference		STD	07ED100	07ED099	07ED098
Conductor					
- resistance	ohm/km	26	29.8	69.3	112
- equiv area	sqmm	0.731	0.638	0.274	0.170
Current rating	amp	7.5	6.5	2.8	1.7
Short cct rating	amp	84.0	73.3	31.5	19.5
Voltage drop	mv/A/m	63	72	168	271
Max length (2.5% drop)	metres	14	12	5	3

Detecting Sub-Standard Cables (DIY)

- Check labels and markings for size, type, manufacturer name/logo and product standard
- Verify physical measurements against manufacturers' data
- Estimate the cross-sectional area of conductor by physical measurement i.e. area x number of wires
- Conduct a conductor d.c. resistance measurement to the Standards

NON-STANDARD CABLES

Cables which are designed and constructed to other standards which may not comply to the prevailing requirements & regulations on test approvals and/or installation conditions

The development of national standards for electric cables takes into account the principles and norms as established internationally, current prevailing conditions and local practices. It is important to understand that these aspects are majorly unbeknown to buyers and users, hence <u>failure to comply</u> on critical aspects may present an undetermined risk on safety.

Basic Design Elements

- CONDUCTOR
 - determines base current ratings
- INSULATION
 - determines voltage / stress levels
- **PROTECTION**
 - determines installation conditions

Empirically..

Cable type	Veltage	Durings out a	Service life		
Cable type	Voltage	Primary	Low	Med	
Bare Conductors	All	Reinforced	35	40	
	All	Non-reinforced	25	35	
Paper insulated,	All	Fluid filled	35	50	
metal sheath	All	Solid	30	40	
Thermosets (XLPE, EPR)	All	Metal sheathed	30	40	
	All	Foil laminated	25	35	
	All	Water tight	25	35	
	All	Armoured/Ducted	25	35	
	All	Non-armoured	15	25	
Thermoplastics (PVC, PE, EVA)	>3.3kV	All types	10	20	
	0.6/1kV	Armoured/Ducted	25	35	
	0.6/1kV	Non-armoured	15	25	
	<1kV	Armoured/Ducted	15	25	
	<1kV	Non-armoured	10	20	
	<1kV	"Sub-standard"	<5		

Conductor Metals

Metals	VR @ 20°C	Density	Mass	1990	2015
	(Ω.mm²/km)	(gm/cm ³)	(kg/km)	(US\$/km)	(US\$/km)
Silver	16.4	10.5	172.2	29,205	116,044
Copper	17.2	8.89	152.9	255	799
Gold	24.4	19.3	470.9	3,925,590	19,789,913
Aluminium	28.3	2.7	76.4	110	112
Tin	124	7.29	904	4,742	14,122
Lead	214	11.4	2440	754	4,243

- Copper
 - Highly Conductive
 - Good Mechanical Properties
 - Relatively Easy to Process
 - Usually Annealed

- Aluminium
 - 60% conductance of copper at same size
 - Half the weight of copper at the same conductance

Insulation Types

- Common types
 - 70°C PVC (Polyvinyl Chloride)
 - 70°C PE (Polyethylene)
 - 90°C XLPE (Cross linked PE)
 - 90°C Rubber (EPR, EVA)
 - 65°C PILC (Paper insulated)

Mechanical Protection

- Cables need to be mechanically protected against external damage & installed environments
- PRIMARY by the insulation
- SECONDARY
 - double insulation and/or sheaths
 - armour or reinforcement when exposed to potential damage (direct in ground)
 - barriers to prevent ingression of moisture, oils, solvents etc.

Electrical Protection

- Cables need to be electrically protected against damage to adjacent cables, connecting equipment and for safety of users against electrical hazards
- PRIMARY by the insulation & sheaths
- SECONDARY

- by conductive layer(s) for the safe transfer of leakage currents, to be appropriately sized to meet system ratings and/or suitable grounding or bonding methods against leakages, transients and lightning

Protection from Pest Attack

Method		Features	
Mixing termite repellent in surrounding earth		Environmental problem	
Coating oversheath with termite repellent		Difficult to apply Health problem	
Mixing termite repellent into cable sheaths	Aldrin & Dieldrin	Effective but use is however banned in many countries	
	Copper naphthanate, Cypermethrin	Alternative to Aldrin & Dieldrin, reasonably effective	
Polyethylene Sheath		Slows down attack	
Common metal sheaths		Slows down attack	
Tape armour		Good protection from large insects and rodents	
Nylon Sheath		Resistant to termites, but difficult to manufacture	

Property	PVC	Polyethylene	LSOH
Tensile (N/sqmm)	15	25	10
Elongation	150%	300%	100%
Density	1.3 - 1.5	0.91 - 0.96	1.4 - 1.6
Physical	Soft and flexible	Hard and rigid	Semi-hard and rigid
Abrasion Resistance	Poor	Excellent	Acceptable
Hot indentation	Acceptable	Excellent	Good
Impact Resistance (thick slab)	Good	Poor	Poor
Stress cracking	Resistant	Variable (dependent on molecular weight i.e. density)	Variable (dependent on base compound and mix)
Moisture	Absorbs moisture with prolonged contact	Negligible absorption	Absorbs and retains moisture within a short time
Vapour permeability	Reasonably permeable	Resistant	Permeable
High temp. performance	Increased ageing at higher temps.	Improved thermal & ageing performance	Generally stable
Low temp. performance	Brittle at sub zero	Stable at sub zero	Generally stable
Resistance to chemicals	Good	Excellent	Poor
Fire Performance	Flame retardant, emits toxic fumes & smoke	Low OI, burns without toxic fumes	Flame retardant, low smoke & no toxic fumes
Processability	Readily extrudable	Extrudable	Extrudable with special tools
Compound	Compounded with additives and fillers	Homogeneous	Highly filled base compound with additives and fillers
InstallationConditions :			
Direct in Ground - Dry	Excellent	Excellent	Good
Direct in Ground - Wet	Good (short term only)	Excellent	Not Recommended
Exposure to UV light	Resistant	Good (require UV resistant additives)	Variable (dependent on base compound and mix)

Cable and conductor systems

NK Cables Ltd. has a long history and outstanding experience in the cable business. NK Cables Ltd. was formerly known as Nokia Cables Ltd. and its history spans over 85 years of neverending development of products and services, from small industrial enterprise established in 1912 to today's high-tech cable manufacturer. Since 1996 the company has been a part of NKF Group which is an international group of companies, supplying globally cable products and services for power and telecommunications networks and other applications.

NK Cables Ltd. got it's new name in 1997. The company has three production plants in Finland and three abroad.

NK Cables manufactures Aerial Bundled Cable systems (ABC-systems) for low and medium voltage distribution networks and medium and high voltage (up to 154 kV) plastic covered conductor systems:

- AMKA low voltage and SAXKA medium voltage ABC-cables
- XLPE-covered conductors for medium (SAX) and high voltages (LMF SAX)

SAXKA (11 -36 kV) cables have phase conductors insulated with cross-linked polyethylene (XLPE) twisted round a messenger wire which supports the cable. With SAXKA-cables, medium voltage power can be transmitted safely and reliably through areas where clearances are restricted.

The AMKA-system (1kV) is ideal for modernizing and extending low voltage distribution systems. It is safer and more reliable than bare conductors, and overall it is also cheaper because installation and maintenance costs are remarkably reduced.

Power Cables Malaysia CONFIDENTIAL CCF97/008/LAD-R02 REPORT NO. Failure mechanism on 33kV aerial cables TITLE in service for Tenaga Nasional Berhad This report is a discussion on aspects SUMMARY of design contribution towards formulating a suitable failure mechanism as reported in Report No. CCF97/008/LAD-R01. Experiences from abroad are included in understanding proposals for new designs. AUTHOR Lokman A. Dahlan (OA & Technical Manager) AUTHORISED BY Jamel Yusof (General Manager - Manufacturing) DATE OF ISSUE 22nd July 1998 CIRCULATION AWS, JY, MST, CLC, LAD IR Rahimuddin Jabatan Kejuruteraan (Perkhidmatan Pengguna) Tenaga Nasional Berhad.

UV Degradation by Colours

- Exposure to ultraviolet (UV) radiation may cause the significant degradation of many materials. UV radiation causes photooxidative degradation which results in breaking of the polymer chains, produces free radical and reduces the molecular weight, causing deterioration of mechanical properties and leading to useless materials, after an unpredictable time.
- The Star-Spangled Banner is a case in point. Both the dyes and the wool of our country's most famous flag have been seriously light-degraded over time. And as expected, the red dye is more faded than the blue. "The red dyes are more susceptible to fading because they look red and thus absorb blue, and blue is the higher-energy light," notes David Erhardt of the Smithsonian Center for Materials Research and Education, who assisted the flag's conservation project.

Water Treeing

- Formation of "tree-like" structures in polyolefins such as PE and XLPE.
- Reduces the breakdown strength of insulation resulting in "electrical trees"
- Degrades with time, electrical stress, frequency and water pressure
- "Bow ties" within insulation due to voids and contaminants
- "Vented trees" from screen interface protrusions and imperfections

Moisture Barrier for HV XLPE Cables

A radial moisture barrier is required to prevent the initial ingress of moisture into the cable

- Extruded Lead Sheath (preferred)
- Extruded Aluminium Sheath
- Metallic Foil Laminate (most economical but least effective)

In the event of damage to the radial moisture barrier longitudinal water blocking is essential

- Using tapes and yarns loaded with swellable material or "solid" compounds
- Strategically positioned underneath and between extruded layers, within metal screens, armour or conductor

IEC 60287 Part 1-1: Current rating equations (100 % load factor) and calculation of losses - General

1.4.1.1 AC cables

The permissible current rating of an a.c. cable can be derived from the expression for the temperature rise above ambient temperature:

$$\Delta \theta = (I^2 R + \frac{1}{2} W_d) T_1 + [I^2 R (1 + \lambda_1) + W_d] n T_2 + [I^2 R (1 + \lambda_1 + \lambda_2) + W_d] n (T_3 + T_4)$$

where

I is the current flowing in one conductor (A);

$\Delta \theta$ is the conductor temperature rise above the ambient temperature (K);

NOTE The ambient temperature is the temperature of the surrounding medium under normal conditions, at a situation in which cables are installed, or are to be installed, including the effect of any local source of heat, but not the increase of temperature in the immediate neighbourhood of the cables due to heat arising therefrom.

- *R* is the alternating current resistance per unit length of the conductor at maximum operating temperature (Ω/m) ;
- $W_{\rm d}$ is the dielectric loss per unit length for the insulation surrounding the conductor (W/m);
- T₁ is the thermal resistance per unit length between one conductor and the sheath (K.m/W);
- T₂ is the thermal resistance per unit length of the bedding between sheath and armour (K.m/W);
- T_3 is the thermal resistance per unit length of the external serving of the cable (K.m/W);
- T₄ is the thermal resistance per unit length between the cable surface and the surrounding medium, as derived from 2.2 of Part 2 (K.m/W);
- n is the number of load-carrying conductors in the cable (conductors of equal size and carrying the same load);
- λ_1 is the ratio of losses in the metal sheath to total losses in all conductors in that cable;
- λ_2 is the ratio of losses in the armouring to total losses in all conductors in that cable.

Circuit Analogy – Heat Transfer

Current Rating Calculations

Current Rating Calculations

CUSTOMER PROJECT/REF. MANUFACTURER DOCUMENT NO. DOC. TITLE	PRYSMIAN POWER CABL WOTONGA PROJECT POWER CABLES MALAYS PCM-CR-2011/259-1 CURRENT RATING CALCO	IA SDN BHD			
Issued by : ZAIREEN	Date : 4-Jul-2011 Revision No. 0 Sheet No. 1 of 1				

Cables laid direct in Ground, in PE Ducts, in Air (shaded) and in buried Trough.

Cubies and arrect in Orbana, in 1 E Ducis, in Air (snaded) and in buried frough.											
Phase to earth voltage	38000	v	DC re	esistance a	at 20°C			4	47.0	µohn	n/m
Phase to phase voltage	66000	v	Ins. th	hm. resisti	vity	- 1			3.5	K m	w
Power frequency	50) Hz	Non-	metallic s	heath TR				3.50	K.m/	w
Ins. rel. permittivity	2.5	5 —	Soil t	hm. resist	ivity	- 1			1.2	Km	W
Tangent delta	.00	ı —	Duct	thm. resis	tivity	- 1			3.50	K.m/	w
Duct "u" constant	1.8	7 —	Diam	eter over	conductor	· 1			22.8		
Duct "v" constant	.31			eter over					50.9	111111	
Duct "v" constant	.00			l cov. mea		- 1			54.0	111111	
Air "z" trefoil flat	.96.1.31			all diamet		- 1				111111	
Air "e" trefoil flat	1.25.2.00		Duct	internal d	iameter	- 1				111111	
Air "g" trefoil.flat	.20, .20		Duct	external d	ismeter	- 1				mm	
Trough temp.rise trefoil	14.1			in groun		- 1		1200.1		11111	
Trough temp.rise flat	16			zh depth. 1		- 1		1000.		11111	
Capacitance	221.0			-bond see		- 1		100/100/		m/m	m
capacitance	221.	pr/m	01055	oodu se	cuous			100/100/	100		
Lay configuration	—	Trefoil	Trefoil	Trefoil	Trefoil	Flat		Flat	Fla		Flat
Sheath bonding	-	Special	Special	Special	Special	Speci		Special	Spec		Special
Cable laying condition	-	Ground	Ducts	Air	Trough	Group		Ducts	Air		Trough
Phase axial spacing	mm	65	110	65	65	130		220	130		130
Ambient lay temperature	°C °C	25.0	25.0	30.0	30.0	25.0		25.0	30.		30.0
Max. conductor temperature Skin effect	-0	90.0	90.0	90.0	90.0	90.0		90.0 .0225	90.		90.0 0225
Proximity effect		.0225	.0225	.0225	.0225	.022		.0225	.0022		.0225
AC resistance at max, temp.	uohm/m	62.0	61.5	62.0	62.0	61.4		61.3	61.		61.4
Metallic covering resistance	uohm/m	215.1	215.3	207.4	211.5	214		214.7	204		209.7
Metallic covering loss factor		.0406	.0154	.0421	.0413	.020		.0098	.009		.0095
Therm resistance - Insulation	K.m/W	.4480	.4480	.4480	.4480	.448	0	.4480	.448		.4480
Therm. resistance - Oversheath	K.m/W	.1020	.1020	.0638	.0638	.063	8	.0638	.063	8	.0638
Therm. resist. cable to ducts	K.m/W	-	.3790	-	-	-	- 1	.3808	-		-
Therm. resist. of ducts	K.m/W	-	.0531	-	-	-	- 1	.0531	-		-
Therm. resist. outside ducts	K.m/W		1.8025	-	-		-	1.6354	_	_	-
Therm resistance - External	K.m/W	2.1048	2.2345	.6930	.7387	1.936		2.0692	.493		.5303
External surface temperature Conductor loss per phase	°C W/m	76.9 23.7	77.3 23.0	65.0 48.5	71.8	76.9		77.3 25.0	59. 59.		68.8 41.3
Dielectric loss per phase	W/m	.10	.10	-10	.10	.10		.10	.10		-10
Metallic cov. loss per phase	W/m	.10	.10	2.04	1.46	.10		.24	.58		.39
menanc cov. loss per plinse	W/101	.90	- 35	2.04	1.40			-27		·	
Calculated ratings	Amps	618	612	885	755	654	.	639	98		820
Equivalent capacity	mva	70.68	69.97	101.16	86.28	74.7		73.02	112		93.76
Cct nos : centre spacing	nomm	1:	1:	1:	1:	1:		1:	1:		1:
Tier nos : depth spacing	no:mm	1:	1:	1:	1:	1:	-	1:	1:-	-	1:

Cable Current Rating Considerations

- Cable laying conditions
- Ambient & operating temperatures
- Lay configuration
- Bonding system
- External heat sources (including nearby cables)

Case Study: 630sqmm Alum XLPE 132kV Cable

Thermal Conditions

- Laid direct in ground
- Ground temperature 25°C
- Depth of laying 1000 mm
- Soil TR 1.2 Km/W

System Configuration

- Single circuit
- In trefoil formation
- Specially bonded without transposition

Manner of Cable Laying

Lay configuration		Trefoil
Sheath bonding		Special
Cable laying condition		Ground
Phase axial spacing	mm	96
Ambient lay temperature	°C	25
	-	
Depth of Laying	mm	1000
Soil thermal resistivity	K.m/W	1.2
Max. conductor temperature	°C	90
Skin effect		0.0223
Proximity effect		0.0088
AC resistance at max. temp.	µohm/m	62
Metallic covering loss factor		0.0013
Therm. resistance - Insulation	K.m/W	0.5323
Therm. resistance - Oversheath	K.m/W	0.0918
Therm. resist. cable to ducts	K.m/W	-
Therm. resist. of ducts	K.m/W	-
Therm. resist. outside ducts	K.m/W	-
Therm. resistance – External	K.m/W	1.7779
External surface temperature	°C	73.1
Conductor loss per phase	W/m	27
Dielectric loss per phase	W/m	0.31
Metallic cov. loss per phase	W/m	0.04
Calculated ratings	Amps	660
Equivalent capacity	mva	150.97
· · · ·		

Ground Level	Ground Leve	***	
			25mm
Trefoil	Trefoil	Trefoil	Trefoil
Special	Special	Special	Special
Ducts	Ducts	Air	Air
160	96	96	96
25	25	25	25
1000	1000		
1.2	1.2		
90	90	90	90
0.0223	0.0223	0.0223	0.0223
0.0031	0.0088	0.0088	0.0088
61.7	62	62	62
0.0027	0.0013	0.0014	0.0013
0.5323	0.5323	0.5323	0.5323
0.0918	0.0918	0.0574	0.0574
0.2807	0.1415	-	—
0.036	0.0189	-	-
1.4833	1.7779	-	_
1.8000	1.9382	0.5097	0.4774
73.3	74.2	55.2	64.2
26.8	25.3	59.1	43.8
0.31	0.31	0.31	0.31
0.07	0.03	0.08	0.06
659	639	976	840
150.61	146.16	223.18	192.08

Temperature "Rise"

$$I = \left[\frac{\Delta \theta - W_{\rm d} \left[0.5 \ T_1 + n \ (T_2 + T_3 + T_4) \right]}{RT_1 + nR \ (1 + \lambda_1) \ T_2 \ + nR \ (1 + \lambda_1 + \lambda_2) \ (T_3 + T_4)} \right]^{0.5}$$

$\Delta \vartheta$ is the conductor temperature rise above the ambient temperature (K);

NOTE The ambient temperature is the temperature of the surrounding medium under normal conditions, at a situation in which cables are installed, or are to be installed, including the effect of any local source of heat, but not the increase of temperature in the immediate neighbourhood of the cables due to heat arising therefrom.

		STD				
Lay configuration		Trefoil	Trefoil		Maxi	mum Conductor
Sheath bonding		Special	Special	Insulation	Ten	nperature (°C)
Cable laying condition		Ground	Ground	PVC	101	
Phase axial spacing	mm	96	96			70
Ambient lay temperature	°C	25	35	Polyethylene		70
Depth of Laying	mm	1000	1000	Butyl Rubbe	er	85
Soil thermal resistivity	K.m/W	1.2	1.2	EPR		90
Max. conductor temperature	°C	90	90	XLPE		90
Skin effect		0.0223	0.0223	Natural Rubb	er	60
Proximity effect		0.0088	0.0088	Impregnated Pa	aper	65 - 80
AC resistance at max. temp.	µohm/m	62	62			
Metallic covering loss factor		0.0013	0.0013			
Therm. resistance – Insulation	K.m/W	0.5323	0.5323	оС	amos	"factor"
Therm. resistance – Oversheath	K.m/W	0.0918	0.0918	15	700	
Therm. resist. cable to ducts	K.m/W	-	-	15	709	1.074
Therm. resist. of ducts	K.m/W	-	—	20	685	1.038
Therm. resist. outside ducts	K.m/W	—	_	25	660	1.000
Therm. resistance – External	K.m/W	1.7779	1.7779	20	000	1.000
External surface temperature	°C	73.1	75.7	30	634	0.961
Conductor loss per phase	W/m	27	22.9		607	0.020
Dielectric loss per phase	W/m	0.31	0.31	35	607	0.920
Metallic cov. loss per phase	W/m	0.04	0.03			
Calculated ratings	Amps	660	607			
Equivalent capacity	mva	150.97	138.87			

Thermal Resistances : T_1, T_2, T_3, T_4

$$I = \left[\frac{\Delta \theta - W_{\rm d} \left[0.5 \ T_1 + n \ (T_2 + T_3 + T_4) \right]}{RT_1 + nR \ (1 + \lambda_1) \ T_2 + nR \ (1 + \lambda_1 + \lambda_2) \ (T_3 + T_4)} \right]^{0.5}$$

- T₁ is the thermal resistance per unit length between one conductor and the sheath (K.m/W);
- T₂ is the thermal resistance per unit length of the bedding between sheath and armour (K.m/W);
- T_3 is the thermal resistance per unit length of the external serving of the cable (K.m/W);
- T₄ is the thermal resistance per unit length between the cable surface and the surrounding medium, as derived from 2.2 of Part 2 (K.m/W);

2.2.2 Single isolated buried cable

$$T_4 = \frac{1}{2\pi} \rho_T \ln \left(u + \sqrt{u^2 - 1} \right)$$

where

 ρ_T is the thermal resistivity of the soil (K.m/W)

$$u = \frac{2L}{D_{e}}$$

L is the distance from the surface of the ground to the cable axis (mm)

De is the external diameter of the cable (mm)

for corrugated sheaths $D_{\rm e} = D_{\rm oc} + 2 t_{\rm 3}$

Cable Laying

- In Air on racks, bridges, along walls, suspended on poles (aerial)
- Laid in open/closed troughs, tunnels, in conduits (exposed)
- Laid Direct in ground as-is or in pipes/ducts
- Underwater, submarine or river crossing

Cables laid direct in Ground, in PE Ducts, in Air (shaded) and in buried Trough.

	Ground temperate Ambient air temp In Trough temp, in Phase to earth vol Phase to phase vol Power frequency Ins. rel. permittiv Tangent delta Duct "u" constant Duct "v" constant Duct "v" constant Air "z" constant Air "g" constant Ductbank dimens	o. rise ltage oltage ity t t	Grand	25.0 30.0 11.2 6350 11000 50 2.5 .004 1.87 .31 .00 .21 3.94 .60	°C Non-metallic sheath TR. V Soil thm. resistivity V Duct thm. resistivity Hz Ductbank/Backfill TR. Diameter over conductor Diameter over core Metal cov. mean diam. Overall diameter Duct internal diameter Duct external diameter Depth in ground, ducts			1.20 800 1000	18.2 27.6 28.0 73.9 125 135 0, 800 0, 500	µohm/m K.m/W K.m/W K.m/W K.m/W MM MM mm mm mm mm mm mm mm	Turch		
1	le laying condition	°C	Ground 25.0	Ducts 25.0	Alf 30.0	30.0				Ground	Ducts	Air	Trough
	bient lay temperature x. conductor temperature	°C	25.0 90.0	25.0 90.0	90.0	90.0		Ambient lay temperature	°C °C	25.0 139.0	25.0 173.0	30.0 90.0	30.0 108.0
	a effect		.0032	.0032	.0032	.0032		Max. conductor temperature Skin effect		.0024	.0020	.0032	.0029
	ximity effect		.0052	.0052	.0052	.0052		Proximity effect		.0024	.0020	.0052	.0029
1	resistance at max, temp.	uohm/m	161.7	161.7	161.7	161.7		AC resistance at max, temp.	uohm/m	186.5	203.2	161.7	170.7
1	allic covering resistance	uohm/m	2011.3	2021.8	1986.3	2001.6		Metallic covering resistance	uohm/m	2289.1	2494.0	1986.3	2096.3
1	tallic covering loss factor		.0061	.0060	.0061	.0061		Metallic covering loss factor		.0046	.0039	.0061	.0055
	rm. resistance – Insulation	K.m/W	.3238	.3238	.3238	.3238		Therm, resistance - Insulation	K.m/W	.3238	.3238	.3238	.3238
	rm. resistance – Oversheath	K.m/W	.1027	.1027	.1027	.1027		Therm, resistance – Oversheath	K.m/W	.1027	.1027	.1027	.1027
	rm. resist. cable to ducts	K.m/W	-	.3341	-	-		Therm, resist, cable to ducts	K.m/W	-	.2451	-	-
The	rm. resist. of ducts	K.m/W	-	.0429	-	-		Therm. resist. of ducts	K.m/W	-	.0429	-	-
The	rm. resist. outside ducts	K.m/W	-	.6043	-	-		Therm. resist. outside ducts	K.m/W	-	.6043	-	-
The	rm. resistance – External	K.m/W	.7196	.9812	.3521	.3692		Therm. resistance - External	K.m/W	.7196	.8922	.3521	.3483
Exte	emal surface temperature	°C	75.3	78.5	67.6	72.3		External surface temperature	°C	****	****	67.6	84.3
Con	ductor loss per phase	W/m	23.2	18.1	35.4	27.9		Conductor loss per phase	W/m	40.9	44.6	35.4	37.4
Diel	lectric loss per phase	W/m	.02	.02	.02	.02		Dielectric loss per phase	W/m	.02	.02	.02	.02
Met	tallic cov. loss per phase	W/m	.14	.11	.22	.17		Metallic cov. loss per phase	W/m	.19	.17	.22	.21
Calo	culated ratings	Amps	378	334	468	415		Calculated ratings	Amps	468	468	468	468
Equ	ivalent capacity	mva	7.21	6.37	8.91	7.91		Equivalent capacity	mva	8.92	8.92	8.91	8.92
	nos : centre spacing 1 nos : depth spacing	no:mm no:mm	l: 1:—	l: l:—	1: 1:	1:	_	Cct nos : centre spacing Tier nos : depth spacing	no:mm no:mm	1: 1:	1: 1:—	1: 1:	1: 1:

Bending Radii

	No of Cores	With Former	Without Former	Laid Direct	Laid in Ducts
33kV Armoured	1		15D	20D	
	3		12D	15D	
33kV Unarmoured	1		12D	15D	
	3		10D	12D	
66 - 132kV	1	15D	20D	30D	35D

D = Cable Diameter

T₄ : Depth of Laying

		STD	
Lay configuration		Trefoil	Trefoil
Sheath bonding		Special	Special
Cable laying condition		Ground	Ground
Phase axial spacing	mm	96	96
Ambient lay temperature	°C	25	25
Depth of Laying	mm	1000	500
Soil thermal resistivity	K.m/W	1.2	1.2
Max. conductor temperature	°C	90	90
Skin effect		0.0223	0.0223
Proximity effect		0.0088	0.0088
AC resistance at max. temp.	µohm/m	62	62
Metallic covering loss factor		0.0013	0.0013
Therm. resistance – Insulation	K.m/W	0.5323	0.5323
Therm. resistance – Oversheath	K.m/W	0.0918	0.0918
Therm. resist. cable to ducts	K.m/W	-	-
Therm. resist. of ducts	K.m/W	-	-
Therm. resist. outside ducts	K.m/W	-	—
Therm. resistance – External	K.m/W	1.7779	1.3807
External surface temperature	°C	73.1	69.8
Conductor loss per phase	W/m	27	32.4
Dielectric loss per phase	W/m	0.31	0.31
Metallic cov. loss per phase	W/m	0.04	0.04
Calculated ratings	Amps	660	723
Equivalent capacity	mva	150.97	165.25

mm depth	amps	"factor"
500	723	1.095
750	684	1.036
1000	660	1.000
1250	643	0.974
1500	631	0.956

T₄ : Soil thermal resistivity

		STD
Lay configuration		Trefoil
Sheath bonding		Special
Cable laying condition		Ground
Phase axial spacing	mm	96
Ambient lay temperature	°C	25
Depth of Laying	mm	1000
Soil thermal resistivity	K.m/W	1.2
Max. conductor temperature	°C	90
Skin effect		0.0223
Proximity effect		0.0088
AC resistance at max. temp.	µohm/m	62
Metallic covering loss factor		0.0013
Therm. resistance – Insulation	K.m/W	0.5323
Therm. resistance - Oversheath	K.m/W	0.0918
Therm. resist. cable to ducts	K.m/W	-
Therm. resist. of ducts	K.m/W	-
Therm. resist. outside ducts	K.m/W	-
Therm. resistance – External	K.m/W	1.7779
External surface temperature	°C	73.1
Conductor loss per phase	W/m	27
Dielectric loss per phase	W/m	0.31
Metallic cov. loss per phase	W/m	0.04
Calculated ratings	Amps	660
Equivalent capacity	mva	150.97

Trefoil	
Special	
, Ground	
96	
25	
1000	
0.9	
90	
0.0223	
0.0088	
62	
0.0013	
0.5323	
0.0918	
0.0910	
_	
-	
-	
1.3334	
69.3	
33.2	
0.31	
0.04	
731	
167.23	

soil Km/w	amps	"factor"
0.9	731	1.108
1.0	705	1.068
1.1	682	1.033
1.2	660	1.000
1.5	607	0.920
2.0	540	0.818

287-3-1 @ IEC:1995

3.2.2 Thermal resistivity of soil

	Thermal resistivity (K.m/W)	Soil conditions	Weather conditions	
	0,7	Very moist	Continuously moist	
	1,0	Moist	Regular rainfall	
	2,0	Dry	Seldom rains	
1	3,0	Very dry	Little or no rain	

– 13 –

4 Values relating to the operating conditions in various countries

4.1	Australia				
1)	Standard conditions				
	Soil thermal resistivity	1,2 K.m/W			
	Soil ambient temperature	25 °C summer			
		18 °C winter			
2)	Depth of laying				
	Measured from the ground su trefoil group.	rface to the centre of the ca	able, or to	o the centre of	a
	L.V. cables	500 mm under footv	ways		
		750 mm under road	ways		
	11 kV cables	800 mm under footv	ways		
		800 mm under road	ways		
	33 kV cables and higher voltage	ges 1 000 mm under footv	ways		
		1 000 mm under road	ways		
3)	Air ambient temperature				

Maximum value

40 °C summer 30 °C winter

Combined effects of temperature rise, depth of laying and soil Tr

		STD				
Lay configuration		Trefoil	Trefoil	Trefoil	Trefoil	Trefoil
Sheath bonding		Special	Special	Special	Special	Special
Cable laying condition		Ground	Ground	Ground	Ground	Ground
Phase axial spacing	mm	96	96	96	96	96
Ambient lay temperature	°C	25	35	25	25	35
Depth of Laying	mm	1000	1000	500	1000	500
Soil thermal resistivity	K.m/W	1.2	1.2	1.2	0.9	0.9
Max. conductor temperature	°C	90	90	90	90	90
Skin effect		0.0223	0.0223	0.0223	0.0223	0.0223
Proximity effect		0.0088	0.0088	0.0088	0.0088	0.0088
AC resistance at max. temp.	µohm/m	62	62	62	62	62
Metallic covering loss factor		0.0013	0.0013	0.0013	0.0013	0.0013
Therm. resistance – Insulation	K.m/W	0.5323	0.5323	0.5323	0.5323	0.5323
Therm. resistance - Oversheath	K.m/W	0.0918	0.0918	0.0918	0.0918	0.0918
Therm. resist. cable to ducts	K.m/W	-	-	-	-	-
Therm. resist. of ducts	K.m/W	-	-	-	-	—
Therm. resist. outside ducts	K.m/W	-	-	—	—	—
Therm. resistance – External	K.m/W	1.7779	1.7779	1.3807	1.3334	1.0355
External surface temperature	°C	73.1	75.7	69.8	69.3	69.3
Conductor loss per phase	W/m	27	22.9	32.4	33.2	33.1
Dielectric loss per phase	W/m	0.31	0.31	0.31	0.31	0.31
Metallic cov. loss per phase	W/m	0.04	0.03	0.04	0.04	0.04
Calculated ratings	Amps	660	607	723	731	731
Equivalent capacity	mva	150.97	138.87	165.25	167.23	167.07

оС	amos	"factor"	mm depth	amps	"factor"	soil Km/w	amps	"factor"
15	709	1.074	500	723	1.095	0.9	731	1.108
20	685	1.038	750	684	1.036	1.0	705	1.068
25	660	1.000	1000	660	1.000	1.1	682	1.033
30	634	0.961				1.2	660	1.000
			1250	643	0.974	1.5	607	0.920
35	607	0.920	1500	631	0.956	2.0	540	0.818

660A x 0.920 x 1.095 x 1.108 = 737A

Consideration of external heat sources

Figure 1 – Diagramme montrant un groupe de câbles q et leur symétrique par rapport à la surface du sol

Diagram showing a group of q cables and their reflection in the ground-air surface

2.2.3.1 Unequally loaded cables

The method suggested for groups of unequally loaded dissimilar cables is to calculate the temperature rise at the surface of the cable under consideration caused by the other cables of the group, and to subtract this rise from the value of $\Delta \theta$ used in the equation for the rated current in 1.4 of part 1. An estimate of the power dissipated per unit length of each cable must be made beforehand, and this can be subsequently amended as a result of the calculation where this becomes necessary.

Thus, the temperature rise $\Delta \theta_p$ above ambient at the surface of the p^{th} cable, whose rating is being determined, caused by the power dissipated by the other (q - 1) cables in the group, is given by:

$$\Delta \theta_{p} = \Delta \theta_{1p} + \Delta \theta_{2p} + \dots \Delta \theta_{kp} + \dots \Delta \theta_{q}$$

(the term $\Delta \theta_{nn}$ is excluded from the summation)

where

 $\Delta \theta_{kp}$ is the temperature rise at the surface of the cable produced by the power W_k watt per unit length dissipated in cable *k*:

$$\Delta \theta_{kp} = \frac{1}{2\pi} \rho_T W_k \ln \left(\frac{d'_{pk}}{d_{pk}} \right)$$

The distances d_{pk} and d'_{pk} are measured from the centre of the p^{th} cable to the centre of cable k, and to the centre of the reflection of cable k in the ground-air surface respectively (see figure 1).

The value of $\Delta \theta$ in the equation for the rated current in 1.4 of part 1 is then reduced by the amount $\Delta \theta_p$ and the rating of the p^{th} cable is determined using a value T_4 corresponding to an isolated cable at position p.

This calculation is performed for all cables in the group and is repeated where necessary to avoid the possibility of overheating any cable.

Case C

		132kV 1200 Cu	11kV 3c240 Al	132kV 1200 Cu	33kV 630 AI
Uo		76000	6350	76000	19000
TanD	TanD		0.004	0.001	0.004
MVA		150.1	5.0	150.1	30.1
Amps		656.5	263.1	656.5	525.8
Cond temp oC	Cond temp oC		69.2	48.6	67.9
Cond AC ohm/km	า	0.0178	0.1514	0.0178	0.0576
Capacitance mF/	km	0.2389	0.4552	0.2389	0.3041
Sheath Loss factor	or	0.0082	0.0068	0.0082	0.0032
Conductor W/	m/ph	7.6739	10.4794	7.6739	15.9254
Dielectric W/	m/ph	0.4335	0.0231	0.4335	0.1380
Sheath W/	m/ph	0.0628	0.0716	0.0628	0.0516
TOTAL W/	m/ckt	24.510	31.722	24.510	48.345
Soil resistivity Km	n/W	1.2	1.2	1.2	1.2
Depth to center m	nm	1500	1100	1500	1000
vert	horiz	0	250	500	1800
A 1500	0	1.0000	5.5374	6.0828	1.6490
B 1100	250	5.5374	1.0000	5.5374	1.6804
C 1500	500	6.0828	5.5374	1.0000	2.0231
D 1000	1800	1.6490	1.6804	2.0231	1.0000
A Delta temp		0.0000	8.0119	8.4516	2.3414
B Delta temp		10.3694	0.0000	10.3694	3.1447
C Delta temp		8.4516	8.0119	0.0000	3.2984
D Delta temp		4.6182	4.7925	6.5058	0.0000
TOTAL		23.44	20.82	25.33	8.78
FINAL Cond t	emp oC	72.0	90.0	73.9	76.7

В

C

D

A

T_1 : Inductive losses

1.4.1.2 DC cables up to 5 kV

The permissible current rating of a d.c. cable is obtained from the following simplification of the a.c. formula:

$$I = \left[\frac{\Delta \theta}{R' T_1 + nR' T_2 + nR' (T_3 + T_4)}\right]^{0.5}$$

$$I = \left[\frac{\Delta \theta - W_{\rm d} \left[0.5 \ T_1 + n \ (T_2 + T_3 + T_4) \right]}{RT_1 + nR \ (1 + \lambda_1) \ T_2 \ + nR \ (1 + \lambda_1 + \lambda_2) \ (T_3 + T_4)} \right]^{0.5}$$

 W_d is the dielectric loss per unit length for the insulation surrounding the conductor (W/m);

 λ_1 is the ratio of losses in the metal sheath to total losses in all conductors in that cable;

 λ_2 is the ratio of losses in the armouring to total losses in all conductors in that cable.

2.3 Loss factor for sheath and screen (applicable to power frequency a.c. cables only) The power loss in the sheath or screen (λ 1) consists of losses caused by circulating currents (λ 1') and eddy currents (λ 1''), thus: λ 1 = λ 1' + λ 1''

For single-core cables with sheaths bonded at both ends of an electrical section, only the loss due to circulating currents in the sheaths need be considered (see 2.3.1, 2.3.2 and 2.3.3). An electrical section is defined as a portion of the route between points at which the sheaths or screens of all cables are solidly bonded.

For a cross-bonded installation, it is considered unrealistic to assume that minor sections are electrically identical and that the loss due to circulating currents in the sheaths is negligible. Recommendations are made in 2.3.6 for augmenting the losses in the sheaths to take account of this electrical unbalance.

3.0 Discussions

The events leading to the fault is suggested as follows;

- Cuts were made on the cable by a sharp edge tool which were not deep enough to have caused an immediate failure
- With the copper wire screen of the cable partially exposed, an electrical connection would have developed over time between the screen and the nearest grounding earth
- The concrete wall and a metal bar in close proximity of the exposed screen provides the nearest point of ground return
- In solid bonding, a potential would be created for circulating currents to flow away from the grounded end to this near point.
- Over an undetermined period, the flow of current would have deteriorated further with a
 possible increase due to moisture ingression from the concrete wall, eventually leading to the
 occurrence of fault at the weakest point of damage.

4.0 Conclusion

From the investigation and aforementioned discussions, the conclusions are as follows;

- The cable fault occurred over a period of time upon initiation of deep cuts exposing the wire screen to the elements of deterioration, leading to eventual failure
- Manufacturing defect can be ruled out due to its extensive nature and the unlikelihood that the observation of such damage can be missed during installation works

End of Report

Earthing and Bonding

- Solid Bonding
- Special Bonding
 - Single End Point
 - Mid Point
 - Cross Bonding

Solid Bonding

Single End Point Bonding

Cross Bonding System

Lay configuration : Trefoil & Flat at Solid & Special bondings

Lay configuration		Trefoil	Trefoil	Flat	Flat
Sheath bonding		Special	Solid	Special	Solid
Cable laying condition		Ground	Ground	Ground	Ground
Touching or Spaced		Touching	Touching	Touching	Touching
Phase axial spacing	mm	96	96	96	96
Ambient lay temperature	°C	25	25	25	25
Depth of Laying	mm	1000	1000	1000	1000
Soil thermal resistivity	K.m/W	1.2	1.2	1.2	1.2
Max. conductor temperature	°C	90	90	90	90
Skin effect		0.0223	0.0223	0.0223	0.0223
Proximity effect		0.0088	0.0088	0.0088	0.0088
AC resistance at max. temp.	µohm/m	62	62	62	62
Metallic covering loss factor	·	0.0013	0.405	0.0008	0.2358
Therm. resistance – Insulation	K.m/W	0.5323	0.5323	0.5323	0.5323
Therm. resistance - Oversheath	K.m/W	0.0918	0.0918	0.0574	0.0574
Therm. resist. cable to ducts	K.m/W	-	_	-	-
Therm. resist. of ducts	K.m/W	-	_	-	_
Therm. resist. outside ducts	K.m/W	-	-	_	1.7126
Therm. resistance – External	K.m/W	1.7779	1.7779	1.7126	75.6
External surface temperature	°C	73.1	76.4	73.4	23.9
Conductor loss per phase	W/m	27	20.6	28.2	0.31
Dielectric loss per phase	W/m	0.31	0.31	0.31	5.64
Metallic cov. loss per phase	W/m	0.04	8.33	0.02	621
Calculated ratings	Amps	660	576	675	141.95
Equivalent capacity	mva	150.97	131.7	154.23	

Lay configuration : Flat, Solid & Specially bonded, Touching & Spaced

-1 ->

Lay configuration	
Sheath bonding	
Cable laying condition	
Touching or Spaced	
Phase axial spacing	mm
Ambient lay temperature	°C
Depth of Laying	mm
Soil thermal resistivity	K.m/W
Max. conductor temperature	°C
Skin effect	
Proximity effect	
AC resistance at max. temp.	µohm/m
Metallic covering loss factor	
Therm. resistance – Insulation	K.m/W
Therm. resistance - Oversheath	K.m/W
Therm. resist. cable to ducts	K.m/W
Therm. resist. of ducts	K.m/W
Therm. resist. outside ducts	K.m/W
Therm. resistance – External	K.m/W
External surface temperature	°C
Conductor loss per phase	W/m
Dielectric loss per phase	W/m
Metallic cov. loss per phase	W/m
Calculated ratings	Amps

mva

Equivalent capacity

Flat	Flat	Flat
Special	Special	Special
Ground	Ground	Ground
Touching	Spaced	Spaced
96	191	287
25	25	25
1000	1000	1000
1.2	1.2	1.2
90	90	90
0.0223	0.0223	0.0223
0.0088	0.0022	0.001
62	61.6	61.5
0.0008	0.0025	0.0035
0.5323	0.5323	0.5323
0.0574	0.0574	0.0574
—	-	-
—	-	—
-	-	—
1.7126	1.6109	1.4582
73.4	72.6	71.3
28.2	29.5	31.7
0.31	0.31	0.31
0.02	0.07	0.11
675	692	717
154.23	158.16	163.99

Flat	Flat	Flat
Solid	Solid	Solid
Ground	Ground	Ground
Touching	Spaced	Spaced
96	191	287
25	25	25
1000	1000	1000
1.2	1.2	1.2
90	90	90
0.0223	0.0223	0.0223
0.0088	0.0022	0.001
62	61.6	61.5
0.2358	0.7849	1.0951
0.5323	0.5323	0.5323
0.0574	0.0574	0.0574
-	-	-
-	-	-
-	-	-
1.7126	1.6109	1.4582
75.6	78.2	78.6
23.9	18.5	17.5
0.31	0.31	0.31
5.64	14.53	19.2
621	548	534
141.95	125.35	122.04

← 2 →

 \otimes unsuitable for power cables

For a safe and long service life, electric cables are herein prescribed to be..

- Designed to the correct standards, with consideration of its expected rating and environment in service
- Installed in the correct manner as per recommended guidelines
- Maintained (where applicable) and operated within its limits and condition of service
- "Prophesized" for end of life

Thank you !