Safe Cable Installation

Presented by Lokman A. Dahlan Technical Advisor

- Installation
- Cable laying
- Cable jointing
- Cable
- Design aspects
- Risk of fire
- Risk of "fake" cables
- Life cycle

To provide for a correct, orderly and consistent manner of cable installation, and to minimize the potential of any associated risk and safety hazards..

Cable and wire installations shall be conducted by "competent" personnel in the prescribed manner as per the regulatory requirements

...some 100 experienced workers sort, grade, bend into shape and connect up the 250-plus kilometers of cables forming part of each and every Boeing 747-8 and bundle them into cable harnesses ready for installation. **Each cable or wire has its special function in the aircraft and must be connected securely to the correct instrument, button or control panel.** It's a manual job performed by technicians working from detailed drawings and component lists. Every cable has a code of up to 10 digits indicating its position, connections and the cable harness to which it belongs...

DESIGN Conductors Insulation Protection Aluminium Copper Solid Stranded Segmental PILC PVC XLPE LSF HDPE LLDPE Nylon Lead Tapes & Wires Water-Blocking Extrusion Screening Bedding Armouring Curing Silane CCV Termites Voids Resistivity Impedance Ampacity Short Circuit AS/NZ BSI IEC AEIC EEMUA IEEE HV Partial Discharge Ohms/km Capacitance Installation Bond-Pulling Cross-Bonding

What Cable ?

- Aerial, underground, submarine,
- AC, DC, distribution, transmission
- Aluminium, Copper
- PILC, PVC, XLPE, Bare
- LV, MV, HV, EHV, 11kV etc.
- Screened, Belted, Armoured

Design Requirements

- Satisfies power needs
- Flexible
- Reliable
- Has LONG life
- Minimal maintenance
- Economic

Basic Design Elements

- CONDUCTOR
 - determines base current ratings
- INSULATION
 - determines voltage / stress levels
- **PROTECTION**
 - determines installation conditions

Cable Laying

- In principle, cables are laid as per conditions designed or as pre-determined to achieve its specified ratings
 - In Air on racks, bridges, along walls, suspended on poles (aerial)
 - Laid in open/closed troughs, tunnels, in conduits (exposed)
 - Laid Direct in ground as-is or in pipes/ducts
 - Underwater, submarine or river crossing
- Key parameters for rating considerations
 - Ambient temperature
 - Soil thermal resistivity (laying in ground)
 - Lay configuration (single core flat or trefoil)
 - Bonding system (single core solid or special)

Current Rating Calculations

Current Rating Calculations

CUSTOMER PROJECT/REF. MANUFACTURER DOCUMENT NO. DOC. TITLE	PRYSMIAN POWER CABL WOTONGA PROJECT POWER CABLES MALAYS PCM-CR-2011/259-1 CURRENT RATING CALCO	IA SDN BHD	
Issued by : ZAIREEN	Date : 4–Jul–2011	Revision No. 0	Sheet No. 1 of 1

Cables laid direct in Ground, in PE Ducts, in Air (shaded) and in buried Trough.

Cubies iaia airea	or in Grou		e Ducio,		smaarouy	carries 1		an rear 2	, ong		
Phase to earth voltage	38000	v	DC re	esistance a	at 20°C			4	47.0	µohn	n/m
Phase to phase voltage	66000	v	Ins. th	hm. resisti	vity	- 1			3.5	K m	w
Power frequency	50) Hz	Non-	metallic s	heath TR				3.50	K.m/	w
Ins. rel. permittivity	2.5	5 —	Soil t	hm. resist	ivity	- 1			1.2	Km	W
Tangent delta	.00	ı —	Duct	thm. resis	tivity	- 1			3.50	K.m/	w
Duct "u" constant	1.8	7 —	Diam	eter over	conductor	· 1			22.8		
Duct "v" constant	.31			eter over					50.9	111111	
Duct "v" constant	.00			l cov. mea		- 1			54.0	111111	
Air "z" trefoil flat	.96.1.31			all diamet		- 1				111111	
Air "e" trefoil flat	1.25.2.00		Duct	internal d	iameter	- 1				111111	
Air "g" trefoil.flat	.20, .20		Duct	external d	ismeter	- 1				mm	
Trough temp.rise trefoil	14.1			in groun		- 1		1200.1		11111	
Trough temp.rise flat	16			zh depth. 1		- 1		1000.		11111	
Capacitance	221.0			-bond see		- 1		100/100/		m/m	m
capacitance	221.	pr/m	01055	oodu se	cuous			100/100/	100		
Lay configuration	—	Trefoil	Trefoil	Trefoil	Trefoil	Flat		Flat	Fla		Flat
Sheath bonding	-	Special	Special	Special	Special	Speci		Special	Spec		Special
Cable laying condition	-	Ground	Ducts	Air	Trough	Group		Ducts	Air		Trough
Phase axial spacing	mm	65	110	65	65	130		220	130		130
Ambient lay temperature	°C °C	25.0	25.0	30.0	30.0	25.0		25.0	30.		30.0
Max. conductor temperature Skin effect	-0	90.0	90.0	90.0	90.0	90.0		90.0 .0225	90.		90.0 0225
Proximity effect		.0225	.0225	.0225	.0225	.022		.0225	.0022		.0225
AC resistance at max, temp.	uohm/m	62.0	61.5	62.0	62.0	61.4		61.3	61.		61.4
Metallic covering resistance	uohm/m	215.1	215.3	207.4	211.5	214		214.7	204		209.7
Metallic covering loss factor		.0406	.0154	.0421	.0413	.020		.0098	.009		.0095
Therm resistance - Insulation	K.m/W	.4480	.4480	.4480	.4480	.448	0	.4480	.448		.4480
Therm. resistance - Oversheath	K.m/W	.1020	.1020	.0638	.0638	.063	8	.0638	.063	8	.0638
Therm. resist. cable to ducts	K.m/W	-	.3790	-	-	-	- 1	.3808	-		-
Therm. resist. of ducts	K.m/W	-	.0531	-	-	-	- 1	.0531	-		-
Therm. resist. outside ducts	K.m/W		1.8025	-	-		-	1.6354	_	_	-
Therm resistance - External	K.m/W	2.1048	2.2345	.6930	.7387	1.936		2.0692	.493		.5303
External surface temperature Conductor loss per phase	°C W/m	76.9 23.7	77.3 23.0	65.0 48.5	71.8	76.9		77.3 25.0	59. 59.		68.8 41.3
Dielectric loss per phase	W/m	.10	.10	-10	.10	.10		.10	.10		-10
Metallic cov. loss per phase	W/m	.10	.10	2.04	1.46	.10		.24	.58		.39
menanc cov. loss per plinse	W/101	.90	- 35	2.04	1.40			-27		·	
Calculated ratings	Amps	618	612	885	755	654	.	639	98		820
Equivalent capacity	mva	70.68	69.97	101.16	86.28	74.7		73.02	112		93.76
Cct nos : centre spacing	nomm	1:	1:	1:	1:	1:		1:	1:		1:
Tier nos : depth spacing	no:mm	1:	1:	1:	1:	1:	-	1:	1:-	-	1:

 \otimes unsuitable for power cables

Cross Bonding System

3.0 Discussions

The events leading to the fault is suggested as follows;

- Cuts were made on the cable by a sharp edge tool which were not deep enough to have caused an immediate failure
- With the copper wire screen of the cable partially exposed, an electrical connection would have developed over time between the screen and the nearest grounding earth
- The concrete wall and a metal bar in close proximity of the exposed screen provides the nearest point of ground return
- In solid bonding, a potential would be created for circulating currents to flow away from the grounded end to this near point.
- Over an undetermined period, the flow of current would have deteriorated further with a
 possible increase due to moisture ingression from the concrete wall, eventually leading to the
 occurrence of fault at the weakest point of damage.

4.0 Conclusion

From the investigation and aforementioned discussions, the conclusions are as follows;

- The cable fault occurred over a period of time upon initiation of deep cuts exposing the wire screen to the elements of deterioration, leading to eventual failure
- Manufacturing defect can be ruled out due to its extensive nature and the unlikelihood that the observation of such damage can be missed during installation works

End of Report

Cable Jointing

- In principle, the key elements of conductor, insulation and protection are to be reinstated to its original function
 - Conductor closely connected using connectors of similar (or higher) electrical area and mechanical strength
 - Insulation reinstated with compatible material of similar (or improved) breakdown strength
 - Protection reinstated with compatible material of similar (or better) protective characteristics
- In general, joints are restricted for connecting cables of the exact size and construction

- Electric cables are safe until they are electrified
- Cables do not change color or produce any sound when electrified
- Heat dissipation of cables can only be detected when its outermost layer is hotter than the surroundings
- AC is several times more lethal than DC but both can kill
- Water (and moisture) is electrically conductive
- Always assume free cable ends are "live" do not use any part of the body to confirm this
- Cables are not designed to last a lifetime the service life of building cable & wires will not last the life of buildings
- Upon shutdown, charges may still persist especially on highly capacitive circuits and long span HV cables
- Do not exceed the minimum bending radius of cables
- Do not partially remove conductor wires to fit connectors
- When exposed over a period of time, an oxide coating will be formed on the surfaces of aluminum conductors

Basic Design Elements

- CONDUCTOR
 - determines base current ratings
- INSULATION
 - determines voltage / stress levels
- **PROTECTION**
 - determines installation conditions

Protection

- Cables need to be electrically protected against damage to adjacent cables, connecting equipment and for safety of users against electrical hazards
- PRIMARY by the insulation & sheaths
- SECONDARY

- by conductive layer(s) for the safe transfer of leakage currents, to be appropriately sized to meet system ratings and/or suitable grounding or bonding methods against leakages, transients and lightning

Property	PVC	Polyethylene	LSOH	
Tensile (N/sqmm)	15	25	10	
Elongation	150%	300%	100%	
Density	1.3 - 1.5	0.91 - 0.96	1.4 - 1.6	
Physical	Soft and flexible	Hard and rigid	Semi-hard and rigid	
Abrasion Resistance	Poor	Excellent	Acceptable	
Hot indentation	Acceptable	Excellent	Good	
Impact Resistance (thick slab)	Good	Poor	Poor	
Stress cracking	Resistant	Variable (dependent on molecular weight i.e. density)	Variable (dependent on base compound and mix)	
Moisture	Absorbs moisture with prolonged contact	Negligible absorption	Absorbs and retains moisture within a short time	
Vapour permeability	Reasonably permeable	Resistant	Permeable	
High temp. performance	Increased ageing at higher temps.	Improved thermal & ageing performance	Generally stable	
Low temp. performance	Brittle at sub zero	Stable at sub zero	Generally stable	
Resistance to chemicals	Good	Excellent	Poor	
Fire Performance	Flame retardant, emits toxic fumes & smoke	Low OI, burns without toxic fumes	Flame retardant, low smoke & no toxic fumes	
Processability	Readily extrudable	Extrudable	Extrudable with special tools	
Compound	Compounded with additives and fillers	Homogeneous	Highly filled base compound with additives and fillers	
InstallationConditions :				
Direct in Ground - Dry	Excellent	Excellent	Good	
Direct in Ground - Wet	Good (short term only)	Excellent	Not Recommended	
Exposure to UV light	Resistant	Good (require UV resistant additives)	Variable (dependent on base compound and mix)	

In its 124-year history there had never been mass loss of life in a fire on the London Underground. But on 18 November 1987 that would change, as a flashover - a sudden and rapid spread of fire caused by smoke or fumes igniting - claimed the lives of 31 people at King's Cross.

Section 12 Cables Explained - cable to sub-surface locations on the London Underground require Section 12 conforming cables. Following the King's Cross fire on the London Underground in 1987, the Fire Precautions (Sub-Surface Railway Stations) Regulations 1989 – also known as the Section 12 regulations – were introduced. Many people were affected by the smoke and toxic fumes during the fire and the Section 12 regulations stipulate that everything – from display boards to electrical cables – must adhere to stringent safety standards. Cable in Section 12 locations must meet the requirements of LUL Standard 1-085, which details the fire safety performance of materials used on the London Underground. In particular, Section 3.3.3 of the Standard lists the flammability, flame spread and smoke emission requirements for cable. All cables undergo rigorous testing to comply with the regulations.

	FIRE PERFORMANCE CABLE TESTS				
	IEC 60331-21; BS 6387 CWZ; DIN VDE 0472-814(FE180);				
Circuit Integrity	CEI 20-36/2-1; SS229-1; NBN C 30-004 (cat. F3);				
	NF C32-070-2.3(CR1)				
System circuit integrity	DIN 4102-12, E30 depending on lay system				
	EN 60332-1-2; IEC 60332-1-2; BS EN 60332-1-2;				
Flame Retardance (Single Vertical Wire Test)	VDE 0482-332-1 ; NBN C 30-004 (cat. F1); NF C32-070-2.1(C2);				
While resty	CEI 20-35/1-2; EN 50265-2-1*; DIN VDE 0482-265-2-1*				
Reduced Fire Fropagation Propagation EN 60332-3-24 (cat. C); IEC 60332-3-24; BS EN 60332-3-24; VDE 0482-33 (Vertically- C 30-004 (cat. F2); NF C32-070-2.2(C1); CEI 20-22/3-4; EN 50266-2-4*; COMPARED 10482-266-2-4 mounted bundled 0482-266-2-4					
Unionen Fran	IEC 60754-1; EN 50267-2-1; DIN VDE 0482-267-2-1;				
Halogen Free	CEI 20-37/2-1 ; BS 6425-1*				
No Corrosive Gas	IEC 60754-2; EN 50267-2-2; DIN VDE 0482-267-2-2;				
Emission	CEI 20-37/2-2 ; BS 6425-2*				
Minimum Smoke	IEC 61034-1&2; EN 61034 -1&2; DIN VDE 0482-1034-1&2;				
Emission	CEI 20-37/3-1&2; EN 50268-1&2*; BS 7622-1&2*				
No Toxic gases	NES 02-713; NF C 20-454				
Plenum Applications	NFPA 262 – Standard method of test for flame travel and smoke of wires and cables for use in air-handling spaces				
Riser Applications	UL 1666 – Test for flame propagation height of electrical and optical-fiber cables installed vertically in shafts				
	UL 1685 – Vertical-tray fire propagation and smoke-release, test for electrical and optical-fiber cables				
	CSA FT4 – Cables in cable trays				
Vertical Tray	IEEE 383 – Standard for qualifying Class 1E electric cables and field splices for nuclear				
Applications	power generating stations				
	IEEE 1202 – Standard for flame testing of cables for use in cable trays in industrial and				
	commercial occupancies				
	JIS C 3521 – Flame test method for flame-retardant sheath of telecommunication cables				

Danger in using inferior wires, says association

Items flooding the market of late do not conform to safety standards

KUALA LUMPUR, Wed: Think-ing of rewiring your home, or office? Before you spend your money, take note that there has been an influx of substandard wires and cables flooding the market of late.

market of late. The Malaysian Electric Cable & Wires Association (Mecwa), the association representing Malaysia's wire and cable manu-facturers, said today it will un-dertake a nationwide campaign detrake a nationwide cables and wires.

to stamp out substandard cables, and wires. Mecwa president Datuk Ken-neth H'ng said its members were aware of the increasing number of such home wires and cables in the market which do not conform to the quality and standards approved and recognised by the quality certification bodies. "In addition, these cables are often packaged in short lengths duping the consumers into

thinking that he or she is buying loom but is, in fact, receiving less," he said in a statement. H'ng said the low quality, cables are a danger to the public, to approach inition is determined the standards authorities to get the products off the shelves. "Substandard cables are a "Substandard cables are a being cheated when there and being cheated when there are chase poor quality, falsely labelled product." He said the association will that all wire and cable manufac-turers attain the 150 9001/9002 quality standard accreditation and that the authorities approve quality standard accreditation and that the authorities approve renewals based on successful quality accreditation. He said the association will meet with elevant authori-ties, includius Sirim, on the mat-ter. - Bernama

Association: Low quality wires flooding market

KUALA LUMPUR: The Malaysian Electric Cable and Wires Association has warned the public to be wary of sub-standard wires and cables flooding the market.

Association president Datuk Kenneth H'ng, in making this revelation yesterday, said it would carry out a nationwide campaign to stamp out these sub-standard house wiring cables which had begun appearing in the market.

He said association members were aware of the rising quantity of such cables in the market which did not conform to the standards of certification bodies.

"In addition, these undersized and sub-standard cables are often packaged in short lengths so that consumers may think they're buying 100m but are, in fact, getting less," he said in a statement.

H'ng said the low-quality cables were dangerous to the public and the association was determined to approach the Government and the standards authorities for help.

"Sub-standard cables are safety hazards, and in addition, the consumers are being cheated when they buy poor quality, falsely-la-belled products," he said.

H'ng said the association would recommend to the Government that all wire and cable manufacturers attain the ISO 9001/9002 quality standard accreditation.

He also called on the authorities to approve renewals based on successful quality accreditation. -Bernama

STATISTIK PUNCA KEBAKARAN, 2016

PUNCA KEBAKARAN	ЈОН	KED	KEL	MEL	NS	PHG	PRK	PLS	PP	SBH	SWK	SEL	TRG	W.P.KL	W.P. LAB	W.P. PTJY	JUMLAH
Elektrik	100	56	184	152	38	75	109	33	332	17	164	305	147	273	5	15	2,005
Puntung Rokok	167	4	25	10	35	44	24	8	172	1	28	42	145	47	-	1	753
Percikan Api	27	13	11	20	2	12	8	5	17	1	27	29	40	16	-	1	229
Mercun/ Bunga Api	7	1	1	4	-	1	2	-	7	-	2	6	6	5	-	-	42
Ubat Nyamuk/Lilin/Colok	10	1	4	5	1	7	8	1	18	-	15	11	3	13	-	1	98
Dapur Gas/Minyak	40	15	28	37	10	20	26	4	96	3	56	80	33	77	-	3	528
Reaksi Spontan	6	-	5	2	1	37	4	30	22	4	14	7	9	7	-	-	148
Sengaja Dibakar Niat Baik	415	425	294	618	81	143	312	138	673	6	333	377	815	77	-	3	4,710
Sengaja Dibakar Niat Jahat	63	5	11	12	1	15	41	1	39	3	136	73	13	80	-	-	493
Tidak Diketahui	82	15	13	18	3	62	220	1	38	17	34	44	79	22	-	1	649
Tindak Balas Kimia	4	1	-	1	-	-	-	-	-	-	1	1	1	1	-	-	10
Mancis Api	7	2	3	5	-	4	3	-	10	2	72	19	2	3	-	-	132
Lain-Lain Punca	4,220	3,833	1,630	1,582	1,947	2,518	5,819	866	2,071	4,566	1,130	7,167	1,098	1,077	483	71	40,078
JUMLAH	5,148	4,371	2,209	2,466	2,119	2,938	6,576	1,087	3,495	4,620	2,012	8,161	2,391	1,698	488	96	49,875

Sumber : Jabatan Bomba dan Penyelamat Malaysia

Malaysian Standards (MS) on Cables

1	MS 2108: 2007	Electric Cable : 6.35/11(12)kV single core XLPE insulated cables – non-armoured					
2	MS 2109: 2007	Electric Cable : 6.35/11(12)kV single core XLPE insulated cables – armoured					
3	MS 2110 :2007	Electric Cable : 19/33(36)kV single core XLPE insulated cables – non-armoured					
4	MS 2111: 2007	Electric Cable : 19/33(36)kV single core XLPE insulated cables –armoured					
5	MS 2113*	Electric Cable : 12.7/22(24)kV single core XLPE insulated cables – non-armoured					
6	MS 2114*	Electric Cable : 12.7/22(24)kV single core XLPE insulated cables – armoured	MV-XLPE				
7	MS 2115*	Electric Cable : 6.35/11(12)kV three core XLPE insulated cables - non-armoured					
8	MS 2116*	Electric Cable : 6.35/11(12)kV three core XLPE insulated cables –armoured					
9	MS 2117*	Electric Cable : 12.7/22(24)kV three core XLPE insulated cables –armoured					
10	MS 2118*	Electric Cable : 12.7/22(24)kV three core XLPE insulated cables –armoured					
11	MS 2119*	Electric Cable : 19/33(36)kV three core XLPE insulated cables –armoured					
		Electric Cable : 19/33(36)kV three core XLPE insulated cables –armoured					
13		Electric Cable and Wire: 600/1000(Um = 1200) V single core XLPE insulated cable – non-armoured					
	1	Electric Cable and Wire: 600/1000(Um = 1200) V single core XLPE insulated cable –armoured	LV-XLPE				
15		Electric Cable and Wire: 600/1000(Um = 1200) V multi core XLPE insulated cablenon-armoured	LV-ALP'E				
16	MS 2107: 2007	Electric Cable and Wire: 600/1000(Um = 1200) V multi core XLPE insulated cable –armoured					
17	MS 2100:2006	Electric Cable and Wire: 600/1000(Um = 1200) V single core PVC insulated cable – non-armoured					
18	MS 2101:2006	Electric Cable and Wire: 600/1000(Um = 1200) V single core PVC insulated cable –armoured	LV-PVC				
19	MS 2102:2007	Electric Cable and Wire: 600/1000(Um = 1200) V multi core PVC insulated cable –non-armoured	LV-FVC				
20	MS 2103: 2007	Electric Cable and Wire: 600/1000(Um = 1200) V multi core PVC insulated cable –armoured					
21	MS 2112-1: 2009	Electric Cable and Wire: Polyvinyl Chloride(PVC) insulated cables of rated voltages up to and including 450/750 V - Part 1 : General requirements					
22	MS 2112-2: 2009	Electric Cable and Wire: Polyvinyl Chloride(PVC) insulated cables of rated voltages up to and including 450/750 V - Part 2 : Test Methods					
23	MS 2112-3: 2009 **	Electric Cable and Wire: Polyvinyl Chloride(PVC) insulated cables of rated voltages up to and including 450/750 V - Part 3 : Non-sheathed cables for fixed wiring	450/750V-PVC				
24	MS 2112-4: 2009 **	Electric Cable and Wire: Polyvinyl Chloride(PVC) insulated cables of rated voltages up to and including 450/750 V - Part 4 : Sheathed cables for fixed wiring	450/75004100				
25	MS 2112-5: 2009 **	Electric Cable and Wire: Polyvinyl Chloride(PVC) insulated cables of rated voltages up to and including 450/750 V - Part 5 : Flexible cables					
26	MS 2112-6: 2009 **	Electric Cable and Wire: Polyvinyl Chloride(PVC) insulated cables of rated voltages up to and including 450/750 V - Part 6 : Cables for Lifts and flexible connections					
27	MS 2121*	Telecommunication Cable : Plastic Twin pair, triple and unit types, internal cable					
28	MS 2122*	Telecommunication Cable : Jumper cable					
29	MS 2123*	Telecommunication Cable : Self supporting drop wire	Telecoms				
30	MS 2124*	Telecommunication Cable : Fully Filled Unit Twin moisture barrier polyethylene sheathed cable (FF PEUT)	Telecomo				
31	MS 2125*	Telecommunication Cable : Integral Barrier Unit Twin moisture barrier poly ethylene sheathed cable (IB PEUT)					
32	MS 2126*	Telecommunication Cable : Poly ethy lene Insulated 25 Pair Unit Twin moisture barrier poly ethy lene sheathed cable (FS PEUT)					
	· · · · · · · · · · · · · · · · · · ·						

Overview of Standards & Quality of Cables

l Im (max voltago)	Class	Ref Stds & Sp	Ref Stds & SpecificationsRiskExisting/PrevNew		Control on Quality & Inspection		
Um (max voltage)	01055	Existing/Prev			Control on Quality & Inspection		
Above 170kV	EHV	Utility	Utility	Nil	High scrutiny at all levels		
37kV - 170kV	ΗV	IEC/Utility	IEC/Utility	VLow	High sampling rate of test & inspection		

3.7kV - 36kV	MV	BS/IEC/Utility IEC/N	/S Low	Adequate control on test & inspection
1.2kV - 3.6kV	LV	BS/IEC/Owner IEC/N	/S Low	Adequate control on test & inspection

Below 1.2kV ELV BS/MS MS	High Minimum or no control
--------------------------	----------------------------

Empirically..

Cable type	Voltago	Drimony	Service life		
Cable type	Voltage	Primary	Low	Med	
Bare	All	Reinforced	35	40	
Conductors	All	Non-reinforced	25	35	
Paper insulated,	All	Fluid filled	35	50	
metal sheath	All	Solid	30	40	
	All	Metal sheathed	30	40	
	All	Foil laminated	25	35	
Thermosets (XLPE, EPR)	All	Water tight	25	35	
	All	Armoured/Ducted	25	35	
	All	Non-armoured	15	25	
	>3.3kV	All types	10	20	
	0.6/1kV	Armoured/Ducted	25	35	
Thermoplastics	0.6/1kV	Non-armoured	15	25	
(PVC, PE, EVA)	<1kV	Armoured/Ducted	15	25	
	<1kV	Non-armoured	10	20	
	<1kV	"Sub-standard"	<5		

NON-STANDARD CABLES

Cables which are designed and constructed to other standards which may not comply to the prevailing requirements & regulations on test approvals and/or installation conditions

The development of national standards for electric cables takes into account the principles and norms as established internationally, current prevailing conditions and local practices. It is important to understand that these aspects are majorly unbeknown to buyers and users, hence <u>failure to comply</u> on critical aspects may present an undetermined risk on safety.

SUB-STANDARD CABLES

Cables which are not designed, constructed, test approved, installed or used in accordance to their prescribed standards and/or specifications

The development of national standards for electric cables takes into account the principles and norms as established internationally, current prevailing conditions and local practices. It is important to understand that these aspects are majorly unbeknown to buyers and users, hence <u>failure to comply</u> <u>on critical aspects may present an undetermined risk on safety.</u>

Myths of Sub-Standard Cables

- Conductors are smaller due to "technological improvements"
- Copper purity is higher
- Able to withstand higher temperatures hence more current
- The standards have "changed"
- "There is no problem, it still works.."

Sub-Standard Element : Conductors

CRITERIA

- Undersized conductor does not meet the minimum cross-sectional area as determined by its specific resistance
- Construction not in accordance to prescribed standards on size & number of wires, buildup or dimensions
- Metal content not meeting specifications (copper >99.9%, alum >99.7%)

IMPACT

- Non-compliance to any of the above will result in conductor overload in excess of the maximum current loading of the cable
- This condition would lead to eventual breakdown of cable insulation, joints or connectors at installed positions or distribution boards
- Excessive overheating may result in short circuit conditions leading to an electrical fire

Anatomy of Sub-Standard Cables

PHOTOGRAPH OF TEST SAMPLE

REPORT NO.: 2007ED121	PAGE: 2 OF 8
This Test Report refers only to sampled automated by the applacements SIR Sds. Bhd. This test report shall not be reproduced, except in full and the written approval from Executive Director, SIR/M QAS International Sdr	

NOTES:

ADDITIC

1. This is a partial test report.

2. All the tests were conducted at SIRIM QAS International Sdn. Bhd. And had been checked in accordance with the following clauses

a) Clause 5.1, 6.2, 7.2, 7.3, 7.4, 19.3 and 22.3 of MS 140: 1987 b) Clause 7.1, 7.2, 7.3 and 7.4 of MS 69: 1995 c) Tensile & elongation (before ageing) and resistance to crack of MS 138: 1995

 The test sample as described in this test report deened to comply with the requirements of those test conducted except clause 7.2 and 7.4 of MS 69: 1995 and tensile & elongation (before ageing) of MS 138: 1995

PHOTOGRAPH OF TEST SAMPLE

REPORT NO.: 2007ED122	PAGE: 2 OF 8
This Test Report refers only to samples submitted by the applicant to a lik 5.6. [IN] This sist report shall rule be reportured, except in fail and sh written approval from Executive Director, SIRIM QAS International Sen	all not be used for advertising purpoints by any means or forms without

NOTES:

1. This is a partial test report.

ADDITIONAL INFORMATION:

- All the tests were conducted at SIKIM QAS International 50n, Bhd. And had been checked in accordance with the following clauses;
- a) Clause 5.1, 6.2, 7.2, 7.3, 7.4, 19.3 and 22.3 of M5 140; 1987 b) Clause 7.1, 7.2, 7.3 and 7.4 of MS 69; 1995 c) Tensile & clongation (before ageing) and resistance to crack of MS 138: 1995
- The test sample as described in this test report deemed to comply with the requirements of those test conducted except clause 7.2 and 7.4 of MS 69: 1995 and tensile & elongation (before ageing) of MS 138: 1995.

REPORT NO.: 2007ED123	PAGE: 2 OF 7				
The Test Report refers only to samples submatted by the applicant to SIRDM QAS International Sdm BMC and tested by SIRDM QAS International Sdm BMC. This task report shall not be reproduced, except in fail and shall not be used for advertising purposes by any means or forms without written approach from Executive Director SIRM 4QAS International Sdm. BMC					

NOTES:

2. All the tests were conducted at SIRIM QAS International Sdn. Bhd. And had been checked in accordance with the following clauses;

a) Clause 5.1, 6.2, 7.2, 7.3, 7.4, 19.3 and 22.3 of MS 140: 1987 b) Clause 7.1, 7.2, 7.3 and 7.4 of MS 69: 1995
 c) Tensile & elongation (before ageing) and resistance to crack of MS 138: 1995

The test sample as described in this test report deemed to comply with the requirements of those test conducted except clause 5.1 of MS 140-1967, clause 7.2 and 7.4 of MS 69: 1995 and tensile & elongation, (before ageing) of MS 128: 1995.

DITIONAL INFORMATION:		
I. Tested by : Effahaikal Mahmudi	Signature : 15	Date: 3/01/08
2. Checked by: Mr.Surian Rasol	Signature : RL	Date: 3/1 18

- 3. Date of test sample(s) received;
 - a) [4 submission :] | October 2007
 - b) 2nd submission : -
 - c) 3rd submission ; +

c) 3^{ro} submission ; +

Date: 3/01/08

2/01/02

¹ This is a partial test report

Sub-Standard Cables – A Lucrative Business?

Item	Flex	Flexible Cable 40/0.16mm (0.75sqmm) x 3C 300/500V PVC/PVC						
Reference		STD	07ED100	07ED099	07ED098			
Conductor								
- number of wires		40	39	38	38			
- resistance	ohm/km	26	29.8	69.3	112			
- equiv area	sqmm	0.731	0.638	0.274	0.170			
- cond diam	mm	1.061	0.991	0.650	0.511			
- total weight	gm/m	19.490	17.004	7.312	4.524			
Insulation								
 nominal thickness 	mm	0.56	0.65	0.75	0.95			
- weight per core	gm/m	4.278	5.027	4.948	6.542			
 total weight 	gm/m	12.834	15.080	14.843	19.625			
- core diam	mm	2.181	2.291	2.150	2.411			
- laidup diam	mm	4.711	4.949	4.644	5.208			
Sheath								
- overall diam	mm	6.4	7.07	6.89	7.36			
- nominal thickness	mm	0.84	1.06	1.12	1.08			
- calc mass	litre	14.739	20.023	20.347	21.240			
- total weight	gm/m	21.371	29.034	29.504	30.798			
Cable overall weight	gm/m	53.7	61.1	51.7	54.9			

ROS (material only)	Margin	0%	
Material cost	Myr/m	0.739	
PVC	Myr/m	0.154	
Cu	Myr/m	0.585	
PVC price	Myr/kg	4.5	
Cu price	Myr/kg	30	
Reference		STD	

07ED100	
30	
4.5	
0.510	
0.199	
0.709	
4%	

07

ED099	07ED098
30	30
4.5	4.5
.219	0.136
.200	0.227
.419	0.363
6%	104%

Sub-Standard Cables - Electrical Properties

Item	Flexible Cable 40/0.16mm (0.75sqmm) x 3C					
Reference		STD	07ED100	07ED099	07ED098	
Conductor						
- resistance	ohm/km	26	29.8	69.3	112	
- equiv area	sqmm	0.731	0.638	0.274	0.170	
Current rating	amp	7.5	6.5	2.8	1.7	
Short cct rating	amp	84.0	73.3	31.5	19.5	
Voltage drop	mv/A/m	63	72	168	271	
Max length (2.5% drop)	metres	14	12	5	3	

Detecting Sub-Standard Cables (DIY)

- Check labels and markings for size, type, manufacturer name/logo and product standard
- Verify physical measurements against manufacturers' data
- Estimate the cross-sectional area of conductor by physical measurement i.e. area x number of wires
- Conduct a conductor d.c. resistance measurement to the Standards

Class II Copper Conductors 0.5 to 35 sqmm

STAN	DARD - MS/	IEC/BS	ACTUAL - MIN			
cond	wire no.	max *	area	cond	wire	
size	min	ohm/km	sqmm	gm/m	gm/m	
0.5	7	37.11	0.479	4.258	0.608	
0.75	7	25.26	0.704	6.256	0.894	
1	7	18.66	0.953	8.468	1.210	
1.5	7	12.47	1.425	12.67	1.810	
2.5	7	7.639	2.327	20.68	2.955	
4	7	4.753	3.740	33.25	4.750	
6	7	3.175	5.598	49.76	7.109	
10	7	1.887	9.421	83.76	11.97	
16	7	1.186	14.99	133.3	19.04	
25	7	0.749	23.72	210.8	30.12	
35	7	0.540	32.90	292.5	41.79	

Basis of calculations :

Volume resistivity of 17.241 ohm.mm²/km at 20°C with a division factor of 0.97 for harddrawn copper

Specific gravity at 8.89 kg/m³

Resistance-temperature coefficient of 0.00393 /°C at 20°C

Factors at specific temperatures for correcting resistance measurements to 20°C						
°C	factor		°C	factor		
20	1.000		28	0.970		
21	0.996		29	0.966		
22	0.992		30	0.962		
23	0.988		31	0.959		
24	0.985		32	0.955		
25	0.981		33	0.951		
26	0.977		34	0.948		
27	0.973		35	0.944		

Objective : To verify compliance of the cables to MS 2112-3

1st Level verification1.1 Conductor size1.2 Length

Methodolog

- "In 1913, the standard conductivity of pure annealed copper was fixed by the International Electrotechnical Commission (IEC) as that of an annealed copper wire 1 m long, weighing 1 g and having a density of 8.89 g/cm³. The wire exhibited a resistance of exactly 0.15328 Ω . This value was assigned a volume conductivity of 100 % of the International Annealed Copper Standard, written 100% IACS. It corresponds to a volume resistivity of 17.241nΩm.."
- $Cr_{@20^{\circ}C} = Cr_{@T^{\circ}C} \times \frac{1}{1+0.00393(T-20)}$; conductor ohm • at 20°C
- $\frac{L_c}{Cr_c} = \frac{L_1}{Cr_1}$; resistance to length ratio $\frac{L_c}{M_c} = \frac{L_1}{M_1}$; mass to length ratio

Summary of Results

Ide	Identification					Copper Co	onductor				Coil Length			
Brand	Nom Size	Color		CSA (mm²)	Compliance to STD (%)	Ω/m @20°C	Compliance to STD (%)	Mass (gm/m)	Compliance to STD (%)	Physical Measure (m)	By Weight Ratio (m)	By Ohms Ratio (m)	Total Complianc to STD (%	
STD	: MS/BS/I	EC		1.425		0.01210		12.667		L	abel - 100 n	n		
М	1.5	Red		0.970	68.1	0.01822	66.4	8.660	68.4	92.1	89.7	92.5	61.2	
Т	1.5	Green		0.713	50.0	0.02218	54.6	6.947	54.8	74.7	73.8	73.7	40.8	
E	1.5	Red		1.002	70.4	0.01560	77.6	9.830	77.6	88.7	88.6	90.1	68.8	
S	1.5	Black		1.163	81.6	0.01482	81.6	10.580	83.5	97.8	94.9	98.8	79.9	
Z	1.5	Black		1.113	78.1	0.01487	81.3	10.350	81.7	95.8	97.2	94.9	77.9	
STD) : MS/BS/I	EC		2.327		0.00741		20.685		L	abel - 100 n	n		
Y	2.5	Green		1.374	59.1	0.01340	55.3	11.830	57.2	84.6	85.0	88.3	46.8	
М	2.5	Black		1.544	66.4	0.01058	70.0	14.913	72.1	89.9	89.5	91.0	62.9	
Т	2.5	Yellow		1.214	52.2	0.01334	55.5	11.450	55.4	73.5	72.6	76.2	40.8	
E	2.5	Blue		1.992	85.6	0.00912	81.2	17.020	82.3	89.2	89.5	85.9	72.5	
S	2.5	Green		2.141	92.0	0.00845	87.7	18.370	88.8	95.1	96.0	100.6	83.4	

CU Resistivity : 0.017241 CU Density : 8.89 gm/cm3

Cable Life – Contributing Factors

- Internal the requirements of specifications & relevant standards, construction, manufacture, tests and transportation of cables to site
- External the expected conditions to be endured by the cables during its service life
- Operational the manner of handling, installing, jointing & terminating, loading and servicing as per system design

Years	<1	0-35	30-40	>40
Phase	Initiation stage	The Golden years	The Pensioner	The End
Failure freq	Diminishing	Erratic - low	Erratic - high	Increasing, exponentially
Key suspects	installation (workmanship)	physical damage (external)	imperfections (internal)	"unknown" (expired)
Action	repair & make good	cut & joint	replace cable length	replace cable lengths

The quadrants of cable life

Designed	Installed & operated
as required,	as intended,
installed & operated	NOT designed
as intended	as required
Designed as required, NOT installed or operated as intended	NOT designed, NOT installed or operated as intended

Empirically..

Cable type	Voltage	Primary	Service life	
			Low	Med
Bare Conductors	All	Reinforced	35	40
	All	Non-reinforced	25	35
Paper insulated, metal sheath	All	Fluid filled	35	50
	All	Solid	30	40
Thermosets (XLPE, EPR)	All	Metal sheathed	30	40
	All	Foil laminated	25	35
	All	Water tight	25	35
	All	Armoured/Ducted	25	35
	All	Non-armoured	15	25
Thermoplastics (PVC, PE, EVA)	>3.3kV	All types	10	20
	0.6/1kV	Armoured/Ducted	25	35
	0.6/1kV	Non-armoured	15	25
	<1kV	Armoured/Ducted	15	25
	<1kV	Non-armoured	10	20
	<1kV	"Sub-standard"	<5	

Thank you !